RSS news feeds

Maternal Infection Is a Risk Factor for Early Childhood Infection in Filariasis

PLoS Neglected Tropical Diseases News - 30 July 2015 - 9:00pm

by Madhusmita Bal, Prakash K. Sahu, Nityananda Mandal, Ashok K. Satapathy, Manoranjan Ranjit, Shatanu K. Kar

Background

Global Program to Eliminate Lymphatic Filariasis (GPELF) launched by WHO aims to eliminate the disease by 2020. To achieve the goal annual mass drug administration (MDA) with diethylcarbamazine (DEC) plus albendazole (ABZ) has been introduced in all endemic countries. The current policy however excludes pregnant mothers and children below two years of age from MDA. Since pregnancy and early childhood are critical periods in determining the disease outcome in older age, the present study was undertaken to find out the influence of maternal filarial infection at the time of pregnancy on the susceptibility outcome of children born in a community after implementation of MDA for the first time.

Methodology and Principal Findings

The participants in this cohort consists of pregnant mothers and their subsequently born children living in eight adjacent villages endemic for filarial infections, in Khurda District, Odisha, India, where MDA has reduced microfilariae (Mf) rate from 12% to 0.34%. Infection status of mother and their children were assessed by detection of Mf as well as circulating filarial antigen (CFA) assay. The present study reveals a high rate of acquiring filarial infection by the children born to infected mother than uninfected mothers even though Mf rate has come down to < 1% after implementation of ten rounds of MDA.

Significance

To attain the target of eliminating lymphatic filariasis the current MDA programme should give emphasis on covering the women of child bearing age. Our study recommends incorporating supervised MDA to Adolescent Reproductive and Sexual Health Programme (ARSH) to make the adolescent girls free from infection by the time of pregnancy so as to achieve the goal.

Evaluation of Cardiac Involvement in Children with Dengue by Serial Echocardiographic Studies

PLoS Neglected Tropical Diseases News - 30 July 2015 - 9:00pm

by Tawatchai Kirawittaya, In-Kyu Yoon, Sineewanlaya Wichit, Sharone Green, Francis A. Ennis, Robert V. Gibbons, Stephen J. Thomas, Alan L. Rothman, Siripen Kalayanarooj, Anon Srikiatkhachorn

Background

Infection with dengue virus results in a wide range of clinical manifestations from dengue fever (DF), a self-limited febrile illness, to dengue hemorrhagic fever (DHF) which is characterized by plasma leakage and bleeding tendency. Although cardiac involvement has been reported in dengue, the incidence and the extent of cardiac involvement are not well defined.

Methods and Principal findings

We characterized the incidence and changes in cardiac function in a prospective in-patient cohort of suspected dengue cases by serial echocardiography. Plasma leakage was detected by serial chest and abdominal ultrasonography. Daily cardiac troponin-T levels were measured. One hundred and eighty one dengue cases were enrolled. On the day of enrollment, dengue cases that already developed plasma leakage had lower cardiac index (2695 (127) vs 3188 (75) (L/min/m2), p = .003) and higher left ventricular myocardial performance index (.413 (.021) vs .328 (.026), p = .021) and systemic vascular resistance (2478 (184) vs 1820 (133) (dynes·s/cm5), p = .005) compared to those without plasma leakage. Early diastolic wall motion of the left ventricle was decreased in dengue cases with plasma leakage compared to those without. Decreased left ventricular wall motility was more common in dengue patients compared to non-dengue cases particularly in cases with plasma leakage. Differences in cardiac function between DF and DHF were most pronounced around the time of plasma leakage. Cardiac dysfunction was transient and did not require treatment. Transient elevated troponin-T levels were more common in DHF cases compared to DF (14.5% vs 5%, p = 0.028).

Conclusions

Transient left ventricular systolic and diastolic dysfunction was common in children hospitalized with dengue and related to severity of plasma leakage. The functional abnormality spontaneously resolved without specific treatment. Cardiac structural changes including myocarditis were uncommon.

West Nile Virus: High Transmission Rate in North-Western European Mosquitoes Indicates Its Epidemic Potential and Warrants Increased Surveillance

PLoS Neglected Tropical Diseases News - 30 July 2015 - 9:00pm

by Jelke J. Fros, Corinne Geertsema, Chantal B. Vogels, Peter P. Roosjen, Anna-Bella Failloux, Just M. Vlak, Constantianus J. Koenraadt, Willem Takken, Gorben P. Pijlman

Background

West Nile virus (WNV) is a highly pathogenic flavivirus transmitted by Culex spp. mosquitoes. In North America (NA), lineage 1 WNV caused the largest outbreak of neuroinvasive disease to date, while a novel pathogenic lineage 2 strain circulates in southern Europe. To estimate WNV lineage 2 epidemic potential it is paramount to know if mosquitoes from currently WNV-free areas can support further spread of this epidemic.

Methodology/Principal Findings

We assessed WNV vector competence of Culex pipiens mosquitoes originating from north-western Europe (NWE) in direct comparison with those from NA. We exposed mosquitoes to infectious blood meals of lineage 1 or 2 WNV and determined the infection and transmission rates. We explored reasons for vector competence differences by comparing intrathoracic injection versus blood meal infection, and we investigated the influence of temperature. We found that NWE mosquitoes are highly competent for both WNV lineages, with transmission rates up to 25%. Compared to NA mosquitoes, transmission rates for lineage 2 WNV were significantly elevated in NWE mosquitoes due to better virus dissemination from the midgut and a shorter extrinsic incubation time. WNV infection rates further increased with temperature increase.

Conclusions/Significance

Our study provides experimental evidence to indicate markedly different risk levels between both continents for lineage 2 WNV transmission and suggests a degree of genotype-genotype specificity in the interaction between virus and vector. Our experiments with varying temperatures explain the current localized WNV activity in southern Europe, yet imply further epidemic spread throughout NWE during periods with favourable climatic conditions. This emphasizes the need for intensified surveillance of virus activity in current WNV disease-free regions and warrants increased awareness in clinics throughout Europe.

Weather Regulates Location, Timing, and Intensity of Dengue Virus Transmission between Humans and Mosquitoes

PLoS Neglected Tropical Diseases News - 29 July 2015 - 9:00pm

by Karen M. Campbell, Kristin Haldeman, Chris Lehnig, Cesar V. Munayco, Eric S. Halsey, V. Alberto Laguna-Torres, Martín Yagui, Amy C. Morrison, Chii-Dean Lin, Thomas W. Scott

Background

Dengue is one of the most aggressively expanding mosquito-transmitted viruses. The human burden approaches 400 million infections annually. Complex transmission dynamics pose challenges for predicting location, timing, and magnitude of risk; thus, models are needed to guide prevention strategies and policy development locally and globally. Weather regulates transmission-potential via its effects on vector dynamics. An important gap in understanding risk and roadblock in model development is an empirical perspective clarifying how weather impacts transmission in diverse ecological settings. We sought to determine if location, timing, and potential-intensity of transmission are systematically defined by weather.

Methodology/Principal Findings

We developed a high-resolution empirical profile of the local weather-disease connection across Peru, a country with considerable ecological diversity. Applying 2-dimensional weather-space that pairs temperature versus humidity, we mapped local transmission-potential in weather-space by week during 1994-2012. A binary classification-tree was developed to test whether weather data could classify 1828 Peruvian districts as positive/negative for transmission and into ranks of transmission-potential with respect to observed disease. We show that transmission-potential is regulated by temperature-humidity coupling, enabling epidemics in a limited area of weather-space. Duration within a specific temperature range defines transmission-potential that is amplified exponentially in higher humidity. Dengue-positive districts were identified by mean temperature >22°C for 7+ weeks and minimum temperature >14°C for 33+ weeks annually with 95% sensitivity and specificity. In elevated-risk locations, seasonal peak-incidence occurred when mean temperature was 26-29°C, coincident with humidity at its local maximum; highest incidence when humidity >80%. We profile transmission-potential in weather-space for temperature-humidity ranging 0-38°C and 5-100% at 1°C x 2% resolution.

Conclusions/Significance

Local duration in limited areas of temperature-humidity weather-space identifies potential locations, timing, and magnitude of transmission. The weather-space profile of transmission-potential provides needed data that define a systematic and highly-sensitive weather-disease connection, demonstrating separate but coupled roles of temperature and humidity. New insights regarding natural regulation of human-mosquito transmission across diverse ecological settings advance our understanding of risk locally and globally for dengue and other mosquito-borne diseases and support advances in public health policy/operations, providing an evidence-base for modeling, predicting risk, and surveillance-prevention planning.

Co-endemicity of Plasmodium falciparum and Intestinal Helminths Infection in School Age Children in Rural Communities of Kwara State Nigeria

PLoS Neglected Tropical Diseases News - 29 July 2015 - 9:00pm

by Ayodele Adedoja, Bukola Deborah Tijani, Ajibola A. Akanbi, Taiwo A. Ojurongbe, Oluwaseyi A. Adeyeba, Olusola Ojurongbe

Background

Malaria and intestinal helminths co-infection are major public health problems particularly among school age children in Nigeria. However the magnitude and possible interactions of these infections remain poorly understood. This study determined the prevalence, impact and possible interaction of Plasmodium falciparum and intestinal helminths co-infection among school children in rural communities of Kwara State, Nigeria.

Methods

Blood, urine and stool samples were collected from 1017 primary school pupils of ages 4–15 years. Stool samples were processed using both Kato-Katz and formol-ether concentration techniques and microscopically examined for intestinal helminths infection. Urine samples were analyzed using sedimentation method for Schistosoma haematobium. Plasmodium falciparum was confirmed by microscopy using thick and thin blood films methods and packed cell volume (PCV) was determined using hematocrit reader. Univariate analysis and chi-square statistical tests were used to analyze the data.

Results

Overall, 61.2% of all school children had at least an infection of either P. falciparum, S. haematobium, or intestinal helminth. S. haematobium accounted for the largest proportion (44.4%) of a single infection followed by P. falciparum (20.6%). The prevalence of malaria and helminth co-infection in the study was 14.4%. Four species of intestinal helminths were recovered from the stool samples and these were hookworm (22.5%), Hymenolepis species (9.8%), Schistosoma mansoni (2.9%) and Enterobius vermicularis (0.6%). The mean densities of P. falciparum in children co-infected with S. haematobium and hookworm were higher compared to those infected with P. falciparum only though not statistically significant (p = 0.062). The age distribution of both S. haematobium (p = 0.049) and hookworm (p = 0.034) infected children were statistically significant with the older age group (10–15 years) recording the highest prevalence of 47.2% and 25% respectively. Children who were infected with S. haematobium (RR = 1.3) and hookworm (RR = 1.4) have equal chances of being infected with P. falciparum as children with no worm infection. On the other hand children infected with Hymenolepis spp. (p<0.0001) are more likely to be infected with P. falciparum than Hymenolepis spp. uninfected children (RR = 2.0)

Conclusions

These findings suggest that multiple parasitic infections are common in school age children in rural communities of Kwara State Nigeria. The Hymenolepis spp. induced increase susceptibility to P. falciparum could have important consequences on how concurrent infections affect the expression or pathogenesis of these infections.

Mapping and Modelling the Geographical Distribution and Environmental Limits of Podoconiosis in Ethiopia

PLoS Neglected Tropical Diseases News - 29 July 2015 - 9:00pm

by Kebede Deribe, Jorge Cano, Melanie J. Newport, Nick Golding, Rachel L. Pullan, Heven Sime, Abeba Gebretsadik, Ashenafi Assefa, Amha Kebede, Asrat Hailu, Maria P. Rebollo, Oumer Shafi, Moses J. Bockarie, Abraham Aseffa, Simon I. Hay, Richard Reithinger, Fikre Enquselassie, Gail Davey, Simon J. Brooker

Background

Ethiopia is assumed to have the highest burden of podoconiosis globally, but the geographical distribution and environmental limits and correlates are yet to be fully investigated. In this paper we use data from a nationwide survey to address these issues.

Methodology

Our analyses are based on data arising from the integrated mapping of podoconiosis and lymphatic filariasis (LF) conducted in 2013, supplemented by data from an earlier mapping of LF in western Ethiopia in 2008–2010. The integrated mapping used woreda (district) health offices’ reports of podoconiosis and LF to guide selection of survey sites. A suite of environmental and climatic data and boosted regression tree (BRT) modelling was used to investigate environmental limits and predict the probability of podoconiosis occurrence.

Principal Findings

Data were available for 141,238 individuals from 1,442 communities in 775 districts from all nine regional states and two city administrations of Ethiopia. In 41.9% of surveyed districts no cases of podoconiosis were identified, with all districts in Affar, Dire Dawa, Somali and Gambella regional states lacking the disease. The disease was most common, with lymphoedema positivity rate exceeding 5%, in the central highlands of Ethiopia, in Amhara, Oromia and Southern Nations, Nationalities and Peoples regional states. BRT modelling indicated that the probability of podoconiosis occurrence increased with increasing altitude, precipitation and silt fraction of soil and decreased with population density and clay content. Based on the BRT model, we estimate that in 2010, 34.9 (95% confidence interval [CI]: 20.2–51.7) million people (i.e. 43.8%; 95% CI: 25.3–64.8% of Ethiopia’s national population) lived in areas environmentally suitable for the occurrence of podoconiosis.

Conclusions

Podoconiosis is more widespread in Ethiopia than previously estimated, but occurs in distinct geographical regions that are tied to identifiable environmental factors. The resultant maps can be used to guide programme planning and implementation and estimate disease burden in Ethiopia. This work provides a framework with which the geographical limits of podoconiosis could be delineated at a continental scale.

Sequence- and Structure-Based Immunoreactive Epitope Discovery for Burkholderia pseudomallei Flagellin

PLoS Neglected Tropical Diseases News - 29 July 2015 - 9:00pm

by Arnone Nithichanon, Darawan Rinchai, Alessandro Gori, Patricia Lassaux, Claudio Peri, Oscar Conchillio-Solé, Mario Ferrer-Navarro, Louise J. Gourlay, Marco Nardini, Jordi Vila, Xavier Daura, Giorgio Colombo, Martino Bolognesi, Ganjana Lertmemonkolchai

Burkholderia pseudomallei is a Gram-negative bacterium responsible for melioidosis, a serious and often fatal infectious disease that is poorly controlled by existing treatments. Due to its inherent resistance to the major antibiotic classes and its facultative intracellular pathogenicity, an effective vaccine would be extremely desirable, along with appropriate prevention and therapeutic management. One of the main subunit vaccine candidates is flagellin of Burkholderia pseudomallei (FliCBp). Here, we present the high resolution crystal structure of FliCBp and report the synthesis and characterization of three peptides predicted to be both B and T cell FliCBp epitopes, by both structure-based in silico methods, and sequence-based epitope prediction tools. All three epitopes were shown to be immunoreactive against human IgG antibodies and to elicit cytokine production from human peripheral blood mononuclear cells. Furthermore, two of the peptides (F51-69 and F270-288) were found to be dominant immunoreactive epitopes, and their antibodies enhanced the bactericidal activities of purified human neutrophils. The epitopes derived from this study may represent potential melioidosis vaccine components.

Multilevel Analysis of Trachomatous Trichiasis and Corneal Opacity in Nigeria: The Role of Environmental and Climatic Risk Factors on the Distribution of Disease

PLoS Neglected Tropical Diseases News - 29 July 2015 - 9:00pm

by Jennifer L. Smith, Selvaraj Sivasubramaniam, Mansur M. Rabiu, Fatima Kyari, Anthony W. Solomon, Clare Gilbert

The distribution of trachoma in Nigeria is spatially heterogeneous, with large-scale trends observed across the country and more local variation within areas. Relative contributions of individual and cluster-level risk factors to the geographic distribution of disease remain largely unknown. The primary aim of this analysis is to assess the relationship between climatic factors and trachomatous trichiasis (TT) and/or corneal opacity (CO) due to trachoma in Nigeria, while accounting for the effects of individual risk factors and spatial correlation. In addition, we explore the relative importance of variation in the risk of trichiasis and/or corneal opacity (TT/CO) at different levels. Data from the 2007 National Blindness and Visual Impairment Survey were used for this analysis, which included a nationally representative sample of adults aged 40 years and above. Complete data were available from 304 clusters selected using a multi-stage stratified cluster-random sampling strategy. All participants (13,543 individuals) were interviewed and examined by an ophthalmologist for the presence or absence of TT and CO. In addition to field-collected data, remotely sensed climatic data were extracted for each cluster and used to fit Bayesian hierarchical logistic models to disease outcome. The risk of TT/CO was associated with factors at both the individual and cluster levels, with approximately 14% of the total variation attributed to the cluster level. Beyond established individual risk factors (age, gender and occupation), there was strong evidence that environmental/climatic factors at the cluster-level (lower precipitation, higher land surface temperature, higher mean annual temperature and rural classification) were also associated with a greater risk of TT/CO. This study establishes the importance of large-scale risk factors in the geographical distribution of TT/CO in Nigeria, supporting anecdotal evidence that environmental conditions are associated with increased risk in this context and highlighting their potential use in improving estimates of disease burden at large scales.

Is PCR the Next Reference Standard for the Diagnosis of Schistosoma in Stool? A Comparison with Microscopy in Senegal and Kenya

PLoS Neglected Tropical Diseases News - 28 July 2015 - 9:00pm

by Lynn Meurs, Eric Brienen, Moustapha Mbow, Elizabeth A. Ochola, Souleymane Mboup, Diana M. S. Karanja, W. Evan Secor, Katja Polman, Lisette van Lieshout

Background

The current reference test for the detection of S. mansoni in endemic areas is stool microscopy based on one or more Kato-Katz stool smears. However, stool microscopy has several shortcomings that greatly affect the efficacy of current schistosomiasis control programs. A highly specific multiplex real-time polymerase chain reaction (PCR) targeting the Schistosoma internal transcriber-spacer-2 sequence (ITS2) was developed by our group a few years ago, but so far this PCR has been applied mostly on urine samples. Here, we performed more in-depth evaluation of the ITS2 PCR as an alternative method to standard microscopy for the detection and quantification of Schistosoma spp. in stool samples.

Methodology/Principal findings

Microscopy and PCR were performed in a Senegalese community (n = 197) in an area with high S. mansoni transmission and co-occurrence of S. haematobium, and in Kenyan schoolchildren (n = 760) from an area with comparatively low S. mansoni transmission. Despite the differences in Schistosoma endemicity the PCR performed very similarly in both areas; 13–15% more infections were detected by PCR when comparing to microscopy of a single stool sample. Even when 2–3 stool samples were used for microscopy, PCR on one stool sample detected more infections, especially in people with light-intensity infections and in children from low-risk schools. The low prevalence of soil-transmitted helminthiasis in both populations was confirmed by an additional multiplex PCR.

Conclusions/Significance

The ITS2-based PCR was more sensitive than standard microscopy in detecting Schistosoma spp. This would be particularly useful for S. mansoni detection in low transmission areas, and post-control settings, and as such improve schistosomiasis control programs, epidemiological research, and quality control of microscopy. Moreover, it can be complemented with other (multiplex real-time) PCRs to detect a wider range of helminths and thus enhance effectiveness of current integrated control and elimination strategies for neglected tropical diseases.

Dengue E Protein Domain III-Based DNA Immunisation Induces Strong Antibody Responses to All Four Viral Serotypes

PLoS Neglected Tropical Diseases News - 28 July 2015 - 9:00pm

by Monica Poggianella, José L. Slon Campos, Kuan Rong Chan, Hwee Cheng Tan, Marco Bestagno, Eng Eong Ooi, Oscar R. Burrone

Dengue virus (DENV) infection is a major emerging disease widely distributed throughout the tropical and subtropical regions of the world affecting several millions of people. Despite constants efforts, no specific treatment or effective vaccine is yet available. Here we show a novel design of a DNA immunisation strategy that resulted in the induction of strong antibody responses with high neutralisation titres in mice against all four viral serotypes. The immunogenic molecule is an engineered version of the domain III (DIII) of the virus E protein fused to the dimerising CH3 domain of the IgG immunoglobulin H chain. The DIII sequences were also codon-optimised for expression in mammalian cells. While DIII alone is very poorly secreted, the codon-optimised fusion protein is rightly expressed, folded and secreted at high levels, thus inducing strong antibody responses. Mice were immunised using gene-gun technology, an efficient way of intradermal delivery of the plasmid DNA, and the vaccine was able to induce neutralising titres against all serotypes. Additionally, all sera showed reactivity to a recombinant DIII version and the recombinant E protein produced and secreted from mammalian cells in a mono-biotinylated form when tested in a conformational ELISA. Sera were also highly reactive to infective viral particles in a virus-capture ELISA and specific for each serotype as revealed by the low cross-reactive and cross-neutralising activities. The serotype specific sera did not induce antibody dependent enhancement of infection (ADE) in non-homologous virus serotypes. A tetravalent immunisation protocol in mice showed induction of neutralising antibodies against all four dengue serotypes as well.

Primary Motor Cortex Representation of Handgrip Muscles in Patients with Leprosy

PLoS Neglected Tropical Diseases News - 23 July 2015 - 9:00pm

by Vagner Wilian Batista e Sá, Maria Katia Gomes, Maria Luíza Sales Rangel, Tiago Arruda Sanchez, Filipe Azaline Moreira, Sebastian Hoefle, Inaiacy Bittencourt Souto, Antônio José Ledo Alves da Cunha, Ana Paula Fontana, Claudia Domingues Vargas

Background

Leprosy is an endemic infectious disease caused by Mycobacterium leprae that predominantly attacks the skin and peripheral nerves, leading to progressive impairment of motor, sensory and autonomic function. Little is known about how this peripheral neuropathy affects corticospinal excitability of handgrip muscles. Our purpose was to explore the motor cortex organization after progressive peripheral nerve injury and upper-limb dysfunction induced by leprosy using noninvasive transcranial magnetic stimulation (TMS).

Methods

In a cross-sectional study design, we mapped bilaterally in the primary motor cortex (M1) the representations of the hand flexor digitorum superficialis (FDS), as well as of the intrinsic hand muscles abductor pollicis brevis (APB), first dorsal interosseous (FDI) and abductor digiti minimi (ADM). All participants underwent clinical assessment, handgrip dynamometry and motor and sensory nerve conduction exams 30 days before mapping. Wilcoxon signed rank and Mann-Whitney tests were performed with an alpha-value of p<0.05.

Findings

Dynamometry performance of the patients’ most affected hand (MAH), was worse than that of the less affected hand (LAH) and of healthy controls participants (p = 0.031), confirming handgrip impairment. Motor threshold (MT) of the FDS muscle was higher in both hemispheres in patients as compared to controls, and lower in the hemisphere contralateral to the MAH when compared to that of the LAH. Moreover, motor evoked potential (MEP) amplitudes collected in the FDS of the MAH were higher in comparison to those of controls. Strikingly, MEPs in the intrinsic hand muscle FDI had lower amplitudes in the hemisphere contralateral to MAH as compared to those of the LAH and the control group. Taken together, these results are suggestive of a more robust representation of an extrinsic hand flexor and impaired intrinsic hand muscle function in the hemisphere contralateral to the MAH due to leprosy.

Conclusion

Decreased sensory-motor function induced by leprosy affects handgrip muscle representation in M1.

Comparison of the Mitochondrial Genomes and Steady State Transcriptomes of Two Strains of the Trypanosomatid Parasite, Leishmania tarentolae

PLoS Neglected Tropical Diseases News - 23 July 2015 - 9:00pm

by Larry Simpson, Stephen M. Douglass, James A. Lake, Matteo Pellegrini, Feng Li

U-insertion/deletion RNA editing is a post-transcriptional mitochondrial RNA modification phenomenon required for viability of trypanosomatid parasites. Small guide RNAs encoded mainly by the thousands of catenated minicircles contain the information for this editing. We analyzed by NGS technology the mitochondrial genomes and transcriptomes of two strains, the old lab UC strain and the recently isolated LEM125 strain. PacBio sequencing provided complete minicircle sequences which avoided the assembly problem of short reads caused by the conserved regions. Minicircles were identified by a characteristic size, the presence of three short conserved sequences, a region of inherently bent DNA and the presence of single gRNA genes at a fairly defined location. The LEM125 strain contained over 114 minicircles encoding different gRNAs and the UC strain only ~24 minicircles. Some LEM125 minicircles contained no identifiable gRNAs. Approximate copy numbers of the different minicircle classes in the network were determined by the number of PacBio CCS reads that assembled to each class. Mitochondrial RNA libraries from both strains were mapped against the minicircle and maxicircle sequences. Small RNA reads mapped to the putative gRNA genes but also to multiple regions outside the genes on both strands and large RNA reads mapped in many cases over almost the entire minicircle on both strands. These data suggest that minicircle transcription is complete and bidirectional, with 3’ processing yielding the mature gRNAs. Steady state RNAs in varying abundances are derived from all maxicircle genes, including portions of the repetitive divergent region. The relative extents of editing in both strains correlated with the presence of a cascade of cognate gRNAs. These data should provide the foundation for a deeper understanding of this dynamic genetic system as well as the evolutionary variation of editing in different strains.

Schistosoma mansoni Eggs in Spleen and Lungs, Mimicking Other Diseases

PLoS Neglected Tropical Diseases News - 23 July 2015 - 9:00pm

by Federico Gobbi, Giulia Martelli, Luciano Attard, Dora Buonfrate, Andrea Angheben, Valentina Marchese, Laura Bortesi, Maria Gobbo, Elisa Vanino, Pierluigi Viale, Zeno Bisoffi

Histamine 1 Receptor Blockade Enhances Eosinophil-Mediated Clearance of Adult Filarial Worms

PLoS Neglected Tropical Diseases News - 23 July 2015 - 9:00pm

by Ellen Mueller Fox, Christopher P. Morris, Marc P. Hübner, Edward Mitre

Filariae are tissue-invasive nematodes that cause diseases such as elephantiasis and river blindness. The goal of this study was to characterize the role of histamine during Litomosoides sigmodontis infection of BALB/c mice, a murine model of filariasis. Time course studies demonstrated that while expression of histidine decarboxylase mRNA increases throughout 12 weeks of infection, serum levels of histamine exhibit two peaks—one 30 minutes after primary infection and one 8 weeks later. Interestingly, mice treated with fexofenadine, a histamine receptor 1 inhibitor, demonstrated significantly reduced worm burden in infected mice compared to untreated infected controls. Although fexofenadine-treated mice had decreased antigen-specific IgE levels as well as lower splenocyte IL-5 and IFNγ production, they exhibited a greater than fourfold rise in eosinophil numbers at the tissue site where adult L. sigmodontis worms reside. Fexofenadine-mediated clearance of L. sigmodontis worms was dependent on host eosinophils, as fexofenadine did not decrease worm burdens in eosinophil-deficient dblGATA mice. These findings suggest that histamine release induced by tissue invasive helminths may aid parasite survival by diminishing eosinophilic responses. Further, these results raise the possibility that combining H1 receptor inhibitors with current anthelmintics may improve treatment efficacy for filariae and other tissue-invasive helminths.

Application of wMelPop Wolbachia Strain to Crash Local Populations of Aedes aegypti

PLoS Neglected Tropical Diseases News - 23 July 2015 - 9:00pm

by Scott A. Ritchie, Michael Townsend, Chris J. Paton, Ashley G. Callahan, Ary A. Hoffmann

The endosymbiotic bacteria Wolbachia pipientis (wMel strain) has been successfully established in several populations of Aedes aegypti, the primary dengue vector. The virulent Wolbachia strain wMelPop is known to cause several pathological impacts (increased egg mortality, life shortening, etc.) reducing overall fitness in the mosquito Ae. aegypti. Increased egg mortality could substantially reduce egg banks in areas with a lengthy monsoonal dry season, and be employed to eliminate local populations. We tested this application under semi-field cage conditions. First, we determined that wMelPop infection significantly reduced the survival of desiccation-resistant eggs of the dengue vector Ae. aegypti, with shade and temperature having a significant impact; nearly all wMelPop-infected eggs failed to hatch after 6 and 10 weeks in summer and winter conditions, respectively. In laboratory selection experiments we found that egg desiccation resistance can be increased by selection, and that this effect of wMelPop infection is due to the nuclear background of the host rather than Wolbachia. We then conducted an invasion of wMelPop within a semi-field cage using sustained weekly releases of wMelPop infected mosquitoes, with fixation achieved after 9 weeks. The egg populations wMelPop infected and an uninfected control were then subjected to a simulated prolonged monsoonal dry season (2.5 months) before flooding to induce hatching. The wMelPop infected eggs suffered significantly greater mortality than the controls, with only 0.67% and 4.35% of respective infected and uninfected eggs held in 99% shade hatching after 80 days. These studies suggest that wMelPop could be used to locally eliminate populations of Ae. aegypti that are exposed to prolonged dry conditions, particularly if combined with vector control.

Quantification of Leishmania (Viannia) Kinetoplast DNA in Ulcers of Cutaneous Leishmaniasis Reveals Inter-site and Inter-sampling Variability in Parasite Load

PLoS Neglected Tropical Diseases News - 23 July 2015 - 9:00pm

by Milagros Suárez, Braulio M. Valencia, Marlene Jara, Milena Alba, Andrea K. Boggild, Jean-Claude Dujardin, Alejandro Llanos-Cuentas, Jorge Arevalo, Vanessa Adaui

Background

Cutaneous leishmaniasis (CL) is a skin disease caused by the protozoan parasite Leishmania. Few studies have assessed the influence of the sample collection site within the ulcer and the sampling method on the sensitivity of parasitological and molecular diagnostic techniques for CL. Sensitivity of the technique can be dependent upon the load and distribution of Leishmania amastigotes in the lesion.

Methodology/Principal Findings

We applied a quantitative real-time PCR (qPCR) assay for Leishmania (Viannia) minicircle kinetoplast DNA (kDNA) detection and parasite load quantification in biopsy and scraping samples obtained from 3 sites within each ulcer (border, base, and center) as well as in cytology brush specimens taken from the ulcer base and center. A total of 248 lesion samples from 31 patients with laboratory confirmed CL of recent onset (≤3 months) were evaluated. The kDNA-qPCR detected Leishmania DNA in 97.6% (242/248) of the examined samples. Median parasite loads were significantly higher in the ulcer base and center than in the border in biopsies (P<0.0001) and scrapings (P = 0.0002). There was no significant difference in parasite load between the ulcer base and center (P = 0.80, 0.43, and 0.07 for biopsy, scraping, and cytology brush specimens, respectively). The parasite load varied significantly by sampling method: in the ulcer base and center, the descending order for the parasite load levels in samples was: cytology brushes, scrapings, and biopsies (P<0.0001); in the ulcer border, scrapings had higher parasite load than biopsies (P<0.0001). There was no difference in parasite load according to L. braziliensis and L. peruviana infections (P = 0.4).

Conclusion/Significance

Our results suggest an uneven distribution of Leishmania amastigotes in acute CL ulcers, with higher parasite loads in the ulcer base and center, which has implications for bedside collection of diagnostic specimens. The use of scrapings and cytology brushes is recommended instead of the more invasive biopsy.

Natural Rabies Infection in a Domestic Fowl (Gallus domesticus): A Report from India

PLoS Neglected Tropical Diseases News - 22 July 2015 - 9:00pm

by Julie Baby, Reeta Subramaniam Mani, Swapna Susan Abraham, Asha T. Thankappan, Prasad Madhavan Pillai, Ashwini Manoor Anand, Shampur Narayan Madhusudana, Jayachandran Ramachandran, Sachin Sreekumar

Background

Rabies is a fatal encephalitis caused by viruses belonging to the genus Lyssavirus of the family Rhabdoviridae. It is a viral disease primarily affecting mammals, though all warm blooded animals are susceptible. Experimental rabies virus infection in birds has been reported, but naturally occurring infection of birds has been documented very rarely.

Principal Findings

The carcass of a domestic fowl (Gallus domesticus), which had been bitten by a stray dog one month back, was brought to the rabies diagnostic laboratory. A necropsy was performed and the brain tissue obtained was subjected to laboratory tests for rabies. The brain tissue was positive for rabies viral antigens by fluorescent antibody test (FAT) confirming a diagnosis of rabies. Phylogenetic analysis based on nucleoprotein gene sequencing revealed that the rabies virus strain from the domestic fowl belonged to a distinct and relatively rare Indian subcontinent lineage.

Significance

This case of naturally acquired rabies infection in a bird species, Gallus domesticus, being reported for the first time in India, was identified from an area which has a significant stray dog population and is highly endemic for canine rabies. It indicates that spill over of infection even to an unusual host is possible in highly endemic areas. Lack of any clinical signs, and fewer opportunities for diagnostic laboratory testing of suspected rabies in birds, may be the reason for disease in these species being undiagnosed and probably under-reported. Butchering and handling of rabies virus- infected poultry may pose a potential exposure risk.

Mapping of Schistosomiasis and Soil-Transmitted Helminths in Namibia: The First Large-Scale Protocol to Formally Include Rapid Diagnostic Tests

PLoS Neglected Tropical Diseases News - 21 July 2015 - 9:00pm

by José Carlos Sousa-Figueiredo, Michelle C. Stanton, Stark Katokele, Moses Arinaitwe, Moses Adriko, Lexi Balfour, Mark Reiff, Warren Lancaster, Bruce H. Noden, Ronnie Bock, J. Russell Stothard

Background

Namibia is now ready to begin mass drug administration of praziquantel and albendazole against schistosomiasis and soil-transmitted helminths, respectively. Although historical data identifies areas of transmission of these neglected tropical diseases (NTDs), there is a need to update epidemiological data. For this reason, Namibia adopted a new protocol for mapping of schistosomiasis and geohelminths, formally integrating rapid diagnostic tests (RDTs) for infections and morbidity. In this article, we explain the protocol in detail, and introduce the concept of ‘mapping resolution’, as well as present results and treatment recommendations for northern Namibia.

Methods/Findings/Interpretation

This new protocol allowed a large sample to be surveyed (N = 17 896 children from 299 schools) at relatively low cost (7 USD per person mapped) and very quickly (28 working days). All children were analysed by RDTs, but only a sub-sample was also diagnosed by light microscopy. Overall prevalence of schistosomiasis in the surveyed areas was 9.0%, highly associated with poorer access to potable water (OR = 1.5, P<0.001) and defective (OR = 1.2, P<0.001) or absent sanitation infrastructure (OR = 2.0, P<0.001). Overall prevalence of geohelminths, more particularly hookworm infection, was 12.2%, highly associated with presence of faecal occult blood (OR = 1.9, P<0.001). Prevalence maps were produced and hot spots identified to better guide the national programme in drug administration, as well as targeted improvements in water, sanitation and hygiene. The RDTs employed (circulating cathodic antigen and microhaematuria for Schistosoma mansoni and S. haematobium, respectively) performed well, with sensitivities above 80% and specificities above 95%.

Conclusion/Significance

This protocol is cost-effective and sensitive to budget limitations and the potential economic and logistical strains placed on the national Ministries of Health. Here we present a high resolution map of disease prevalence levels, and treatment regimens are recommended.

Pages