RSS news feeds

Automated High-Content Assay for Compounds Selectively Toxic to Trypanosoma cruzi in a Myoblastic Cell Line

PLoS Neglected Tropical Diseases News - 23 January 2015 - 10:00pm

by Julio Alonso-Padilla, Ignacio Cotillo, Jesús L. Presa, Juan Cantizani, Imanol Peña, Ana I. Bardera, Jose J. Martín, Ana Rodriguez

Background

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, represents a very important public health problem in Latin America where it is endemic. Although mostly asymptomatic at its initial stage, after the disease becomes chronic, about a third of the infected patients progress to a potentially fatal outcome due to severe damage of heart and gut tissues. There is an urgent need for new drugs against Chagas disease since there are only two drugs available, benznidazole and nifurtimox, and both show toxic side effects and variable efficacy against the chronic stage of the disease.

Methodology/Principal Findings

Genetically engineered parasitic strains are used for high throughput screening (HTS) of large chemical collections in the search for new anti-parasitic compounds. These assays, although successful, are limited to reporter transgenic parasites and do not cover the wide T. cruzi genetic background. With the aim to contribute to the early drug discovery process against Chagas disease we have developed an automated image-based 384-well plate HTS assay for T. cruzi amastigote replication in a rat myoblast host cell line. An image analysis script was designed to inform on three outputs: total number of host cells, ratio of T. cruzi amastigotes per cell and percentage of infected cells, which respectively provides one host cell toxicity and two T. cruzi toxicity readouts. The assay was statistically robust (Z´ values >0.6) and was validated against a series of known anti-trypanosomatid drugs.

Conclusions/Significance

We have established a highly reproducible, high content HTS assay for screening of chemical compounds against T. cruzi infection of myoblasts that is amenable for use with any T. cruzi strain capable of in vitro infection. Our visual assay informs on both anti-parasitic and host cell toxicity readouts in a single experiment, allowing the direct identification of compounds selectively targeted to the parasite.

Discovery of Mosquito Saliva MicroRNAs during CHIKV Infection

PLoS Neglected Tropical Diseases News - 22 January 2015 - 10:00pm

by Payal D. Maharaj, Steven G. Widen, Jing Huang, Thomas G. Wood, Saravanan Thangamani

Mosquito borne pathogens are transmitted to humans via saliva during blood feeding. Mosquito saliva is a complex concoction of many secretory factors that modulate the feeding foci to enhance pathogen infection and establishment. Multiple salivary proteins/factors have been identified/characterized that enhance pathogen infection. Here, we describe, for the first time, the identification of exogenous microRNAs from mosquito saliva. MicroRNAs are short, 18–24 nucleotide, non-coding RNAs that regulate gene expression, and are generally intracellular. However, circulating miRNAs have been described from serum and saliva of humans. Exogenous miRNAs have not been reported from hematophagous arthropod saliva. We sought to identify miRNAs in the mosquito saliva and their role in Chikungunya virus (CHIKV) infection. Next generation sequencing was utilized to identify 103 exogenous miRNAs in mosquito saliva of which 31 miRNAs were previously unidentified and were designated novel. Several miRNAs that we have identified are expressed only in the CHIKV infected mosquitoes. Five of the saliva miRNAs were tested for their potential to regulated CHIKV infection, and our results demonstrate their functional role in the transmission and establishment of infection during blood feeding on the host.

The Influence of HIV and Schistosomiasis on Renal Function: A Cross-sectional Study among Children at a Hospital in Tanzania

PLoS Neglected Tropical Diseases News - 22 January 2015 - 10:00pm

by Neema M. Kayange, Luke R. Smart, Jennifer A. Downs, Mwanaisha Maskini, Daniel W. Fitzgerald, Robert N. Peck

Background

Schistosomiasis and HIV are both associated with kidney disease. Prevalence and factors associated with abnormal renal function among HIV-infected children in Africa compared to uninfected controls have not been well described in a schistosomiasis endemic area.

Methodology/Principal Findings

This cross-sectional study was conducted at the Sekou Toure Regional Hospital HIV clinic in Mwanza, Tanzania. A total of 122 HIV-infected children and 122 HIV-uninfected siblings were consecutively enrolled. Fresh urine was obtained for measurement of albuminuria and Schistosoma circulating cathodic antigen. Blood was collected for measurement of serum creatinine. Estimated glomerular filtration rate (eGFR) was calculated using the modified Schwartz equation. Renal dysfunction was defined operationally as eGFR<60mL/min/1.73m2 and/or albuminuria>20mg/L in a single sample. Among 122 HIV-infected children, 61/122 (50.0%) met our criteria for renal dysfunction: 54/122 (44.3%) had albuminuria>20mg/L and 9/122 (7.4%) had eGFR<60. Among 122 HIV-uninfected children, 51/122 (41.8%) met our criteria for renal dysfunction: 48/122 (39.3%) had albuminuria>20mg/L and 6/122 (4.9%) had eGFR<60. Schistosomiasis was the only factor significantly associated with renal dysfunction by multivariable logistic regression (OR = 2.51, 95% CI 1.46–4.31, p = 0.001).

Conclusions/Significance

A high prevalence of renal dysfunction exists among both HIV-infected Tanzanian children and their HIV-uninfected siblings. Schistosomiasis was strongly associated with renal dysfunction.

Source Tracking Mycobacterium ulcerans Infections in the Ashanti Region, Ghana

PLoS Neglected Tropical Diseases News - 22 January 2015 - 10:00pm

by Charles A. Narh, Lydia Mosi, Charles Quaye, Christelle Dassi, Daniele O. Konan, Samuel C. K. Tay, Dziedzom K. de Souza, Daniel A. Boakye, Bassirou Bonfoh

Although several studies have associated Mycobacterium ulcerans (MU) infection, Buruli ulcer (BU), with slow moving water bodies, there is still no definite mode of transmission. Ecological and transmission studies suggest Variable Number Tandem Repeat (VNTR) typing as a useful tool to differentiate MU strains from other Mycolactone Producing Mycobacteria (MPM). Deciphering the genetic relatedness of clinical and environmental isolates is seminal to determining reservoirs, vectors and transmission routes. In this study, we attempted to source-track MU infections to specific water bodies by matching VNTR profiles of MU in human samples to those in the environment. Environmental samples were collected from 10 water bodies in four BU endemic communities in the Ashanti region, Ghana. Four VNTR loci in MU Agy99 genome, were used to genotype environmental MU ecovars, and those from 14 confirmed BU patients within the same study area. Length polymorphism was confirmed with sequencing. MU was present in the 3 different types of water bodies, but significantly higher in biofilm samples. Four MU genotypes, designated W, X, Y and Z, were typed in both human and environmental samples. Other reported genotypes were only found in water bodies. Animal trapping identified 1 mouse with lesion characteristic of BU, which was confirmed as MU infection. Our findings suggest that patients may have been infected from community associated water bodies. Further, we present evidence that small mammals within endemic communities could be susceptible to MU infections. M. ulcerans transmission could involve several routes where humans have contact with risk environments, which may be further compounded by water bodies acting as vehicles for disseminating strains.

Real-time PCR Demonstrates High Prevalence of Schistosoma japonicum in the Philippines: Implications for Surveillance and Control

PLoS Neglected Tropical Diseases News - 21 January 2015 - 10:00pm

by Catherine. A. Gordon, Luz P. Acosta, Geoffrey N. Gobert, Remigio M. Olveda, Allen G. Ross, Gail M. Williams, Darren J. Gray, Donald Harn, Yuesheng Li, Donald P. McManus

Background

The Philippines has a population of approximately 103 million people, of which 6.7 million live in schistosomiasis-endemic areas with 1.8 million people being at risk of infection with Schistosoma japonicum. Although the country-wide prevalence of schistosomiasis japonica in the Philippines is relatively low, the prevalence of schistosomiasis can be high, approaching 65% in some endemic areas. Of the currently available microscopy-based diagnostic techniques for detecting schistosome infections in the Philippines and elsewhere, most exhibit varying diagnostic performances, with the Kato-Katz (KK) method having particularly poor sensitivity for detecting low intensity infections. This suggests that the actual prevalence of schistosomiasis japonica may be much higher than previous reports have indicated.

Methodology/Principal Findings

Six barangay (villages) were selected to determine the prevalence of S. japonicum in humans in the municipality of Palapag, Northern Samar. Fecal samples were collected from 560 humans and examined by the KK method and a validated real-time PCR (qPCR) assay. A high S. japonicum prevalence (90.2%) was revealed using qPCR whereas the KK method indicated a lower prevalence (22.9%). The geometric mean eggs per gram (GMEPG) determined by the qPCR was 36.5 and 11.5 by the KK. These results, particularly those obtained by the qPCR, indicate that the prevalence of schistosomiasis in this region of the Philippines is much higher than historically reported.

Conclusions/Significance

Despite being more expensive, qPCR can complement the KK procedure, particularly for surveillance and monitoring of areas where extensive schistosomiasis control has led to low prevalence and intensity infections and where schistosomiasis elimination is on the horizon, as for example in southern China.

Th17 Down-regulation Is Involved in Reduced Progression of Schistosomiasis Fibrosis in ICOSL KO Mice

PLoS Neglected Tropical Diseases News - 15 January 2015 - 10:00pm

by Bo Wang, Song Liang, Yu Wang, Xing-Quan Zhu, Wei Gong, Hui-Qin Zhang, Ying Li, Chao-Ming Xia

Background

Granulomatous and fibrosing inflammation in response to parasite eggs is the main pathology that occurs during infection with Schistosoma spp. CD4+ T cells play critical roles in both host immune responses against parasitic infection and immunopathology in schistosomiasis,and coordinate many types of immune cells that contribute to fibrosis. ICOSL plays an important role in controlling specific aspects of T cell activation, differentiation, and function. Previous work has suggested that ICOS is essential for Th17 cell development. However, the immunopathogenesis of this pathway in schistosomiasis fibrosisis still unclear.

Methodology/Principal Findings

Using models of schistosomiasis in ICOSL KO and the C57BL/6 WT mice, we studied the role of the ICOSL/ICOS interaction in the mediation of the Th17 response in host granulomatous inflammation, particularly in liver fibrosis during S. japonicum infection, and investigated the immune responses and pathology of ICOSL KO mice in these models. The results showed that ICOSL KO mice exhibited improved survival, reduced liver granulomatous inflammation around parasite eggs, markedly inhibited hepatic fibrosis development, lower levels of Th17-related cytokines (IL-17/IL-21), Th2-related cytokines (IL-4/IL-6/IL-10), a pro-fibrotic cytokine (IL-13), and TGF-β1, but higher level of Th1-related cytokine (IFN-γ) compared to wild-type (WT) mice. The reduced progression of fibrogenesis was correlated with the down-regulation of Th17 and Th2 and the elimination of ICOSL/ICOS interactions.

Conclusions/Significance

Our findings suggest that IL-17-producing cells contribute to the hepatic granulomatous inflammation and subsequent fibrosis. Importantly, there was a clearly positive correlation between the presence of IL-17-producing cells and ICOS expression in ICOSL KO mice, and additional results indicated that Th17 was involved in the pathological tissue remodeling in liver fibrosis induced by schistosomiasis.

Household Costs of Leprosy Reactions (ENL) in Rural India

PLoS Neglected Tropical Diseases News - 15 January 2015 - 10:00pm

by David J. Chandler, Kristian S. Hansen, Bhabananda Mahato, Joydeepa Darlong, Annamma John, Diana N. J. Lockwood

Background

Erythema nodosum leprosum (ENL) is a common immune-mediated complication of lepromatous (LL) and borderline lepromatous (BL) leprosy. Most patients experience chronic or multiple acute ENL over many years during an economically active period of their lives. Understanding the economic burden of ENL is essential to provide effective patient support, yet this area has not been investigated.

Methods

Ninety-one patients with LL or BL leprosy attending a leprosy hospital in Purulia district of West Bengal, India, were interviewed using a structured questionnaire. Cases (n = 53) were identified as those who had one or more episodes of ENL within the last 3 years. Controls (n = 38) had LL or BL leprosy but no history of ENL. Data were collected on household income, direct and indirect costs, and coping strategies.

Findings

The total household cost was Rs 1543 per month or 27.9% (IQR 13.2-52.6) of monthly household income for cases, and Rs 237 per month or 4.9% (IQR 1.7-13.4) of monthly household income for controls. Indirect costs accounted for 65% of total household costs for cases. Direct costs accounted for the remaining 35% of household costs, and resulted almost entirely from treatment-seeking in the private sector. Total household costs exceeded 40% of household income for 37.7% of cases (n = 20) and 2.6% of controls (n = 1) [1 USD = 59 INR].

Interpretation

Households affected by ENL face significant economic burden and are at risk of being pushed further into poverty. Health policy should acknowledge the importance of private sector provision and the significant contribution to total household costs of lost productivity (indirect cost). Further work is needed to explore this area and identify solutions.

Associations between Schistosomiasis and the Use of Human Waste as an Agricultural Fertilizer in China

PLoS Neglected Tropical Diseases News - 15 January 2015 - 10:00pm

by Elizabeth J. Carlton, Yang Liu, Bo Zhong, Alan Hubbard, Robert C. Spear

Background

Human waste is used as an agricultural fertilizer in China and elsewhere. Because the eggs of many helminth species can survive in environmental media, reuse of untreated or partially treated human waste, commonly called night soil, may promote transmission of human helminthiases.

Methodology/Principal Findings

We conducted an open cohort study in 36 villages to evaluate the association between night soil use and schistosomiasis in a region of China where schistosomiasis has reemerged and persisted despite control activities. We tested 2,005 residents for Schistosoma japonicum infection in 2007 and 1,365 residents in 2010 and interviewed heads of household about agricultural practices each study year. We used an intervention attributable ratio framework to estimate the association between night soil use and S. japonicum infection. Night soil use was reported by half of households (56% in 2007 and 46% in 2010). Village night soil use was strongly associated with human S. japonicum infection in 2007. We estimate cessation of night soil use would lead to a 49% reduction in infection prevalence in 2007 (95% CI: 12%, 71%). However, no association between night soil and schistosomiasis was observed in 2010. These inconsistent findings may be due to unmeasured confounding or temporal shifts in the importance of different sources of S. japonicum eggs on the margins of disease elimination.

Conclusions/Significance

The use of untreated or partially treated human waste as an agricultural fertilizer may be a barrier to permanent reductions in human helminthiases. This practice warrants further attention by the public health community.

Microsatellite Alterations Are also Present in the Less Aggressive Types of Adult T-Cell Leukemia-Lymphoma

PLoS Neglected Tropical Diseases News - 15 January 2015 - 10:00pm

by Marcelo Magalhães, Pedro D. Oliveira, Achiléa L. Bittencourt, Lourdes Farre

Background

Adult T-cell leukemia/lymphoma (ATL) is a mature T-cell neoplasia etiologically linked to HTLV-1. Manifestations of ATL are diverse and different clinical types with different tissue involvement and aggressiveness have been described. The mechanisms that lead to the development of ATL clinical types have not yet been clarified. Considering that in ATL patients HTLV-1 infection generally occurs in childhood, a multistep carcinogenesis model has been proposed. Microsatellite alterations are important genetic events in cancer development and these alterations have been reported in the aggressive types of ATL. Little is known about oncogenesis of the less aggressive types.

Methodology/Principal Findings

In this study we investigated the role of the microsatellite alterations in the pathogenesis mediated by HTLV-1 in the different types of ATL. We examined the presence of microsatellite instability (MSI) and loss of heterozigosity (LOH) in matched pair samples (tumoral and normal) of 24 patients with less aggressive types (smoldering and chronic) and in aggressive types (acute and lymphoma) of ATL. Four microsatellite markers D10S190, D10S191, D1391 and DCC were analyzed. MSI was found in four patients, three smoldering and one chronic, and LOH in four patients, three smoldering and one acute. None of the smoldering patients with microsatellite alterations progressed to aggressive ATL.

Conclusions/Significance

To our knowledge, this is the first report describing the presence of MSI and LOH in the less aggressive types of ATL. These results indicate that microsatellite alterations may participate in the development of the less aggressive types of ATL.

Effect of Antenatal Parasitic Infections on Anti-vaccine IgG Levels in Children: A Prospective Birth Cohort Study in Kenya

PLoS Neglected Tropical Diseases News - 15 January 2015 - 10:00pm

by Indu Malhotra, Maxim McKibben, Peter Mungai, Elisabeth McKibben, Xuelei Wang, Laura J. Sutherland, Eric M. Muchiri, Charles H. King, Christopher L. King, A. Desiree LaBeaud

Background

Parasitic infections are prevalent among pregnant women in sub-Saharan Africa. We investigated whether prenatal exposure to malaria and/or helminths affects the pattern of infant immune responses to standard vaccinations against Haemophilus influenzae (Hib), diphtheria (DT), hepatitis B (Hep B) and tetanus toxoid (TT).

Methods and Findings

450 Kenyan women were tested for malaria, schistosomiasis, lymphatic filariasis (LF), and intestinal helminths during pregnancy. After three standard vaccinations at 6, 10 and 14 weeks, their newborns were followed biannually to age 36 months and tested for absolute levels of IgG against Hib, DT, Hep B, and TT at each time point. Newborns’ cord blood (CB) lymphocyte responses to malaria blood-stage antigens, soluble Schistosoma haematobium worm antigen (SWAP), and filaria antigen (BMA) were also assessed. Three immunophenotype categories were compared: i) tolerant (those having Plasmodium-, Schistosoma-, or Wuchereria-infected mothers but lacking respective Th1/Th2-type recall responses at birth to malaria antigens, SWAP, or BMA); ii) sensitized (those with infected/uninfected mothers and detectable Th1/Th2-type CB recall response to respective parasite antigen); or iii) unexposed (no evidence of maternal infection or CB recall response).Overall, 78.9% of mothers were infected with LF (44.7%), schistosomiasis (32.4%), malaria (27.6%) or hookworm (33.8%). Antenatal maternal malaria, LF, and hookworm were independently associated with significantly lower Hib-specific IgG. Presence of multiple maternal infections was associated with lower infant IgG levels against Hib and DT antigens post-vaccination. Post-vaccination IgG levels were also significantly associated with immunophenotype: malaria-tolerized infants had reduced response to DT, whereas filaria-tolerized infants showed reduced response to Hib.

Conclusions

There is an impaired ability to develop IgG antibody responses to key protective antigens of Hib and diphtheria in infants of mothers infected with malaria and/or helminths during pregnancy. These findings highlight the importance of control and prevention of parasitic infections among pregnant women.

Bilateral Conjunctivitis in a Returned Traveller

PLoS Neglected Tropical Diseases News - 15 January 2015 - 10:00pm

by Sasha R. Fehily, Gail B. Cross, Andrew J. Fuller

Male Mosquitoes as Vehicles for Insecticide

PLoS Neglected Tropical Diseases News - 15 January 2015 - 10:00pm

by James W. Mains, Corey L. Brelsfoard, Stephen L. Dobson

Background

The auto-dissemination approach has been shown effective at treating cryptic refugia that remain unaffected by existing mosquito control methods. This approach relies on adult mosquito behavior to spread larvicide to breeding sites at levels that are lethal to immature mosquitoes. Prior studies demonstrate that ‘dissemination stations,’ deployed in mosquito-infested areas, can contaminate adult mosquitoes, which subsequently deliver the larvicide to breeding sites. In some situations, however, preventative measures are needed, e.g., to mitigate seasonal population increases. Here we examine a novel approach that combines elements of autocidal and auto-dissemination strategies by releasing artificially reared, male mosquitoes that are contaminated with an insecticide.

Methodology

Laboratory and field experiments examine for model-predicted impacts of pyriproxyfen (PPF) directly applied to adult male Aedes albopictus, including (1) the ability of PPF-treated males to cross-contaminate females and to (2) deliver PPF to breeding sites.

Principal Findings

Similar survivorship was observed in comparisons of PPF-treated and untreated males. Males contaminated both female adults and oviposition containers in field cage tests, at levels that eliminated immature survivorship. Field trials demonstrate an ability of PPF-treated males to transmit lethal doses to introduced oviposition containers, both in the presence and absence of indigenous females. A decline in the Ae. albopictus population was observed following the introduction of PPF-treated males, which was not observed in two untreated field sites.

Conclusions/Significance

The results demonstrate that, in cage and open field trials, adult male Ae. albopictus can tolerate PPF and contaminate, either directly or indirectly, adult females and immature breeding sites. The results support additional development of the proposed approach, in which male mosquitoes act as vehicles for insecticide delivery, including exploration of the approach with additional medically important mosquito species. The novelty and importance of this approach is an ability to safely achieve auto-dissemination at levels of intensity that may not be possible with an auto-dissemination approach that is based on indigenous females. Specifically, artificially-reared males can be released and sustained at any density required, so that the potential for impact is limited only by the practical logistics of mosquito rearing and release, rather than natural population densities and the self-limiting impact of an intervention upon them.

Bartonella spp. Bacteremia in Blood Donors from Campinas, Brazil

PLoS Neglected Tropical Diseases News - 15 January 2015 - 10:00pm

by Luiza Helena Urso Pitassi, Pedro Paulo Vissotto de Paiva Diniz, Diana Gerardi Scorpio, Marina Rovani Drummond, Bruno Grosselli Lania, Maria Lourdes Barjas-Castro, Rovilson Gilioli, Silvia Colombo, Stanley Sowy, Edward B. Breitschwerdt, William L. Nicholson, Paulo Eduardo Neves Ferreira Velho

Bartonella species are blood-borne, re-emerging organisms, capable of causing prolonged infection with diverse disease manifestations, from asymptomatic bacteremia to chronic debilitating disease and death. This pathogen can survive for over a month in stored blood. However, its prevalence among blood donors is unknown, and screening of blood supplies for this pathogen is not routinely performed. We investigated Bartonella spp. prevalence in 500 blood donors from Campinas, Brazil, based on a cross-sectional design. Blood samples were inoculated into an enrichment liquid growth medium and sub-inoculated onto blood agar. Liquid culture samples and Gram-negative isolates were tested using a genus specific ITS PCR with amplicons sequenced for species identification. Bartonella henselae and Bartonella quintana antibodies were assayed by indirect immunofluorescence. B. henselae was isolated from six donors (1.2%). Sixteen donors (3.2%) were Bartonella-PCR positive after culture in liquid or on solid media, with 15 donors infected with B. henselae and one donor infected with Bartonella clarridgeiae. Antibodies against B. henselae or B. quintana were found in 16% and 32% of 500 blood donors, respectively. Serology was not associated with infection, with only three of 16 Bartonella-infected subjects seropositive for B. henselae or B. quintana. Bartonella DNA was present in the bloodstream of approximately one out of 30 donors from a major blood bank in South America. Negative serology does not rule out Bartonella spp. infection in healthy subjects. Using a combination of liquid and solid cultures, PCR, and DNA sequencing, this study documents for the first time that Bartonella spp. bacteremia occurs in asymptomatic blood donors. Our findings support further evaluation of Bartonella spp. transmission which can occur through blood transfusions.

Characterization of Plasmodium ovale curtisi and P. ovale wallikeri in Western Kenya Utilizing a Novel Species-specific Real-time PCR Assay

PLoS Neglected Tropical Diseases News - 15 January 2015 - 10:00pm

by Robin H. Miller, Clifford O. Obuya, Elizabeth W. Wanja, Bernhards Ogutu, John Waitumbi, Shirley Luckhart, V. Ann Stewart

Background

Plasmodium ovale is comprised of two genetically distinct subspecies, P. ovale curtisi and P. ovale wallikeri. Although P. ovale subspecies are similar based on morphology and geographical distribution, allelic differences indicate that P. ovale curtisi and P. ovale wallikeri are genetically divergent. Additionally, potential clinical and latency duration differences between P. ovale curtisi and P. ovale wallikeri demonstrate the need for investigation into the contribution of this neglected malaria parasite to the global malaria burden.

Methods

In order to detect all P. ovale subspecies simultaneously, we developed an inclusive P. ovale-specific real-time PCR assay based on conserved regions between P. ovale curtisi and P. ovale wallikeri in the reticulocyte binding protein 2 (rbp2) gene. Additionally, we characterized the P. ovale subspecies prevalence from 22 asymptomatic malaria infections using multilocus genotyping to discriminate P. ovale curtisi and P. ovale wallikeri.

Results

Our P. ovale rbp2 qPCR assay validation experiments demonstrated a linear dynamic range from 6.25 rbp2 plasmid copies/microliter to 100,000 rbp2 plasmid copies/microliter and a limit of detection of 1.5 rbp2 plasmid copies/microliter. Specificity experiments showed the ability of the rbp2 qPCR assay to detect low-levels of P. ovale in the presence of additional malaria parasite species, including P. falciparum, P. vivax, and P. malariae. We identified P. ovale curtisi and P. ovale wallikeri in Western Kenya by DNA sequencing of the tryptophan-rich antigen gene, the small subunit ribosomal RNA gene, and the rbp2 gene.

Conclusions

Our novel P. ovale rbp2 qPCR assay detects P. ovale curtisi and P. ovale wallikeri simultaneously and can be utilized to characterize the prevalence, distribution, and burden of P. ovale in malaria endemic regions. Using multilocus genotyping, we also provided the first description of the prevalence of P. ovale curtisi and P. ovale wallikeri in Western Kenya, a region holoendemic for malaria transmission.

Metabolic Responses to Orientia tsutsugamushi Infection in a Mouse Model

PLoS Neglected Tropical Diseases News - 8 January 2015 - 10:00pm

by Jeeyoun Jung, Youngae Jung, Byoungchul Gill, Changhun Kim, Kyu-Jam Hwang, Young-Ran Ju, Hye-Ja Lee, Hyuk Chu, Geum-Sook Hwang

Tsutsugamushi disease is an infectious disease transmitted to humans through the bite of the Orientia tsutsugamushi-infected chigger mite; however, host-pathogen interactions and the precise mechanisms of damage in O. tsutsugamushi infections have not been fully elucidated. Here, we analyzed the global metabolic effects of O. tsutsugamushi infection on the host using 1H-NMR and UPLC-Q-TOF mass spectroscopy coupled with multivariate statistical analysis. In addition, the effect of O. tsutsugamushi infection on metabolite concentrations over time was analyzed by two-way ANOVAs. Orthogonal partial least squares-discriminant analysis (OPLS-DA) showed distinct metabolic patterns between control and O. tsutsugamushi-infected mice in liver, spleen, and serum samples. O. tsutsugamushi infection caused decreased energy production and deficiencies in both remethylation sources and glutathione. In addition, O. tsutsugamushi infection accelerated uncommon energy production pathways (i.e., excess fatty acid and protein oxidation) in host body. Infection resulted in an enlarged spleen with distinct phospholipid and amino acid characteristics. This study suggests that metabolite profiling of multiple organ tissues and serum could provide insight into global metabolic changes and mechanisms of pathology in O. tsutsugamushi-infected hosts.

Host-Seeking Behavior and Dispersal of Triatoma infestans, a Vector of Chagas Disease, under Semi-field Conditions

PLoS Neglected Tropical Diseases News - 8 January 2015 - 10:00pm

by Ricardo Castillo-Neyra, Corentin M. Barbu, Renzo Salazar, Katty Borrini, Cesar Naquira, Michael Z. Levy

Chagas disease affects millions of people in Latin America. The control of this vector-borne disease focuses on halting transmission by reducing or eliminating insect vector populations. Most transmission of Trypanosoma cruzi, the causative agent of Chagas disease, involves insects living within or very close to households and feeding mostly on domestic animals. As animal hosts can be intermittently present it is important to understand how host availability can modify transmission risk to humans and to characterize the host-seeking dispersal of triatomine vectors on a very fine scale. We used a semi-field system with motion-detection cameras to characterize the dispersal of Triatoma infestans, and compare the behavior of vector populations in the constant presence of hosts (guinea pigs), and after the removal of the hosts. The emigration rate – net insect population decline in original refuge – following host removal was on average 19.7% of insects per 10 days compared to 10.2% in constant host populations (p = 0.029). However, dispersal of T. infestans occurred in both directions, towards and away from the initial location of the hosts. The majority of insects that moved towards the original location of guinea pigs remained there for 4 weeks. Oviposition and mortality were observed and analyzed in the context of insect dispersal, but only mortality was higher in the group where animal hosts were removed (p-value <0.01). We discuss different survival strategies associated with the observed behavior and its implications for vector control. Removing domestic animals in infested areas increases vector dispersal from the first day of host removal. The implications of these patterns of vector dispersal in a field setting are not yet known but could result in movement towards human rooms.

Sero-Prevalence and Cross-Reactivity of Chikungunya Virus Specific Anti-E2EP3 Antibodies in Arbovirus-Infected Patients

PLoS Neglected Tropical Diseases News - 8 January 2015 - 10:00pm

by Yiu-Wing Kam, Kwoon-Yong Pok, Kai Er Eng, Li-Kiang Tan, Simrandeep Kaur, Wendy W. L. Lee, Yee-Sin Leo, Lee-Ching Ng, Lisa F. P. Ng

Chikungunya virus (CHIKV) and clinically-related arboviruses cause large epidemics with serious economic and social impact. As clinical symptoms of CHIKV infections are similar to several flavivirus infections, good detection methods to identify CHIKV infection are desired for improved treatment and clinical management. The strength of anti-E2EP3 antibody responses was explored in a longitudinal study on 38 CHIKV-infected patients. We compared their anti-E2EP3 responses with those of patients infected with non-CHIKV alphaviruses, or flaviviruses. E2EP3 cross-reactive samples from patients infected with non-CHIKV viruses were further analyzed with an in vitro CHIKV neutralization assay. CHIKV-specific anti-E2EP3 antibody responses were detected in 72% to 100% of patients. Serum samples from patients infected with other non-CHIKV alphaviruses were cross-reactive to E2EP3. Interestingly, some of these antibodies demonstrated clearly in vitro CHIKV neutralizing activity. Contrastingly, serum samples from flaviviruses-infected patients showed a low level of cross-reactivity against E2EP3. Using CHIKV E2EP3 as a serology marker not only allows early detection of CHIKV specific antibodies, but would also allow the differentiation between CHIKV infections and flavivirus infections with 93% accuracy, thereby allowing precise acute febrile diagnosis and improving clinical management in regions newly suffering from CHIKV outbreaks including the Americas.

Epidemiology of Cholera in the Philippines

PLoS Neglected Tropical Diseases News - 8 January 2015 - 10:00pm

by Anna Lena Lopez, Lino Y. Macasaet, Michelle Ylade, Enrique A. Tayag, Mohammad Ali

Background

Despite being a cholera-endemic country, data on cholera in the Philippines remain sparse. Knowing the areas where cholera is known to occur and the factors that lead to its occurrence will assist in planning preventive measures and disaster mitigation.

Methods

Using sentinel surveillance data, PubMed and ProMED searches covering information from 2008–2013 and event-based surveillance reports from 2010–2013, we assessed the epidemiology of cholera in the Philippines. Using spatial log regression, we assessed the role of water, sanitation and population density on the incidence of cholera.

Results and Discussion

We identified 12 articles from ProMED and none from PubMed that reported on cholera in the Philippines from 2008 to 2013. Data from ProMed and surveillance revealed 42,071 suspected and confirmed cholera cases reported from 2008 to 2013, among which only 5,006 were confirmed. 38 (47%) of 81 provinces and metropolitan regions reported at least one confirmed case of cholera and 32 (40%) reported at least one suspected case. The overall case fatality ratio in sentinel sites was 0.62%, but was 2% in outbreaks. All age groups were affected. Using both confirmed and suspected cholera cases, the average annual incidence in 2010–2013 was 9.1 per 100,000 population. Poor access to improved sanitation was consistently associated with higher cholera incidence. Paradoxically, access to improved water sources was associated with higher cholera incidence using both suspected and confirmed cholera data sources. This finding may have been due to the breakdown in the infrastructure and non-chlorination of water supplies, emphasizing the need to maintain public water systems.

Conclusion

Our findings confirm that cholera affects a large proportion of the provinces in the country. Identifying areas most at risk for cholera will support the development and implementation of policies to minimize the morbidity and mortality due to this disease.

Type 3 Secretion System Cluster 3 Is a Critical Virulence Determinant for Lung-Specific Melioidosis

PLoS Neglected Tropical Diseases News - 8 January 2015 - 10:00pm

by Maria G. Gutierrez, Tia L. Pfeffer, Jonathan M. Warawa

Burkholderia pseudomallei, the bacterial agent of melioidosis, causes disease through inhalation of infectious particles, and is classified as a Tier 1 Select Agent. Optical diagnostic imaging has demonstrated that murine respiratory disease models are subject to significant upper respiratory tract (URT) colonization. Because human melioidosis is not associated with URT colonization as a prominent presentation, we hypothesized that lung-specific delivery of B. pseudomallei may enhance our ability to study respiratory melioidosis in mice. We compared intranasal and intubation-mediated intratracheal (IMIT) instillation of bacteria and found that the absence of URT colonization correlates with an increased bacterial pneumonia and systemic disease progression. Comparison of the LD50 of luminescent B. pseudomallei strain, JW280, in intranasal and IMIT challenges of albino C57BL/6J mice identified a significant decrease in the LD50 using IMIT. We subsequently examined the LD50 of both capsular polysaccharide and Type 3 Secretion System cluster 3 (T3SS3) mutants by IMIT challenge of mice and found that the capsule mutant was attenuated 6.8 fold, while the T3SS3 mutant was attenuated 290 fold, demonstrating that T3SS3 is critical to respiratory melioidosis. Our previously reported intranasal challenge studies, which involve significant URT colonization, did not identify a dissemination defect for capsule mutants; however, we now report that capsule mutants exhibit significantly reduced dissemination from the lung following lung-specific instillation, suggesting that capsule mutants are competent to spread from the URT, but not the lung. We also report that a T3SS3 mutant is defective for dissemination following lung-specific delivery, and also exhibits in vivo growth defects in the lung. These findings highlight the T3SS3 as a critical virulence system for respiratory melioidosis, not only in the lung, but also for subsequent spread beyond the lung using a model system uniquely capable to characterize the fate of lung-delivered pathogen.

Pages