RSS news feeds

Protective Efficacy of a Plasmodium vivax Circumsporozoite Protein-Based Vaccine in Aotus nancymaae Is Associated with Antibodies to the Repeat Region

PLoS Neglected Tropical Diseases News - 16 October 2014 - 9:00pm

by Anjali Yadava, Cysha E. Hall, JoAnn S. Sullivan, Douglas Nace, Tyrone Williams, William E. Collins, Christian F. Ockenhouse, John W. Barnwell

We have previously reported that Vivax Malaria Protein 001 (VMP001), a vaccine candidate based on the circumsporozoite protein of Plasmodium vivax, is immunogenic in mice and rhesus monkeys in the presence of various adjuvants. In the present study, we evaluated the immunogenicity and efficacy of VMP001 formulated with a TLR9 agonist in a water-in-oil emulsion. Following immunization, the vaccine efficacy was assessed by challenging Aotus nancymaae monkeys with P. vivax sporozoites. Monkeys from both the low- and high-dose vaccine groups generated strong humoral immune responses to the vaccine (peak median titers of 291,622), and its subunits (peak median titers to the N-term, central repeat and C-term regions of 22,188; 66,120 and 179,947, respectively). 66.7% of vaccinated monkeys demonstrated sterile protection following challenge. Protection was associated with antibodies directed against the central repeat region. The protected monkeys had a median anti-repeat titer of 97,841 compared to 14,822 in the non-protected monkeys. This is the first report demonstrating P. vivax CSP vaccine-induced protection of Aotus monkeys challenged with P. vivax sporozoites.

Risk Factors for Bunyavirus-Associated Severe Fever with Thrombocytopenia Syndrome, China

PLoS Neglected Tropical Diseases News - 16 October 2014 - 9:00pm

by Fan Ding, Xu-Hua Guan, Kai Kang, Shu-Jun Ding, Li-Yong Huang, Xue-Sen Xing, Sha Sha, Li Liu, Xian-Jun Wang, Xiao-Mei Zhang, Ai-Guo You, Yan-Hua Du, Hang Zhou, Sirenda Vong, Xiao-Dong Zhang, Zi-Jian Feng, Wei-Zhong Yang, Qun Li, Wen-Wu Yin

Background

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging disease that is caused by a novel bunyavirus, referred to as SFTS virus. During January 2011 to December 2011 we conducted a case-control study in Henan, Hubei and Shandong Provinces of China to determine the risk factors for SFTS.

Methods

Case-patients were identified in hospitals and reported to provincial Centers for Disease Control and Prevention while being notified electronically to the National Surveillance System. Controls were randomly selected from a pool of patients admitted to the same hospital ward within one week of the inclusion of the cases. They were matched by age (+/−5 years) and gender.

Results

A total of 422 patients participated in the study including 134 cases and 288 matched controls. The median age of the cases was 58.8 years, ranging from 47.6 to 70.1 years; 54.5% were male. No differences in demographics were observed between cases and controls; however, farmers were frequent and more common among cases (88.8%) than controls (58.7%). In multivariate analysis, the odds for SFTS was 2.4∼4.5 fold higher with patients who reported tick bites or presence of tick in the living area. Other independent risk factors included cat or cattle ownership and reported presence of weeds and shrubs in the working environment.

Conclusions

Our findings support the hypothesis that ticks are important vectors of SFTS virus. Further investigations are warranted to understand the detailed modes of transmission of SFTS virus while vector management, education on tick bites prevention and personal hygiene management should be implemented for high-risk groups in high incidence areas.

Crovirin, a Snake Venom Cysteine-Rich Secretory Protein (CRISP) with Promising Activity against Trypanosomes and Leishmania

PLoS Neglected Tropical Diseases News - 16 October 2014 - 9:00pm

by Camila M. Adade, Ana Lúcia O. Carvalho, Marcelo A. Tomaz, Tatiana F. R. Costa, Joseane L. Godinho, Paulo A. Melo, Ana Paula C. A. Lima, Juliany C. F. Rodrigues, Russolina B. Zingali, Thaïs Souto-Padrón

Background

The neglected human diseases caused by trypanosomatids are currently treated with toxic therapy with limited efficacy. In search for novel anti-trypanosomatid agents, we showed previously that the Crotalus viridis viridis (Cvv) snake venom was active against infective forms of Trypanosoma cruzi. Here, we describe the purification of crovirin, a cysteine-rich secretory protein (CRISP) from Cvv venom with promising activity against trypanosomes and Leishmania.

Methodology/Principal Findings

Crude venom extract was loaded onto a reverse phase analytical (C8) column using a high performance liquid chromatographer. A linear gradient of water/acetonitrile with 0.1% trifluoroacetic acid was used. The peak containing the isolated protein (confirmed by SDS-PAGE and mass spectrometry) was collected and its protein content was measured. T. cruzi trypomastigotes and amastigotes, L. amazonensis promastigotes and amastigotes and T. brucei rhodesiense procyclic and bloodstream trypomastigotes were challenged with crovirin, whose toxicity was tested against LLC-MK2 cells, peritoneal macrophages and isolated murine extensor digitorum longus muscle. We purified a single protein from Cvv venom corresponding, according to Nano-LC MS/MS sequencing, to a CRISP of 24,893.64 Da, henceforth referred to as crovirin. Human infective trypanosomatid forms, including intracellular amastigotes, were sensitive to crovirin, with low IC50 or LD50 values (1.10–2.38 µg/ml). A considerably higher concentration (20 µg/ml) of crovirin was required to elicit only limited toxicity on mammalian cells.

Conclusions

This is the first report of CRISP anti-protozoal activity, and suggests that other members of this family might have potential as drugs or drug leads for the development of novel agents against trypanosomatid-borne neglected diseases.

Iron Necessity: The Secret of Wolbachia's Success?

PLoS Neglected Tropical Diseases News - 16 October 2014 - 9:00pm

by Alessandra Christina Gill, Alistair C. Darby, Benjamin L. Makepeace

The bacterium Wolbachia (order Rickettsiales) is probably the world's most successful vertically-transmitted symbiont, distributed among a staggering 40% of terrestrial arthropod species. Wolbachia has great potential in vector control due to its ability to manipulate its hosts' reproduction and to impede the replication and dissemination of arboviruses and other pathogens within haematophagous arthropods. In addition, the unexpected presence of Wolbachia in filarial nematodes of medical and veterinary importance has provided an opportunity to target the adult worms of Wuchereria bancrofti, Onchocerca volvulus, and Dirofilaria immitis with safe drugs such as doxycycline. A striking feature of Wolbachia is its phenotypic plasticity between (and sometimes within) hosts, which may be underpinned by its ability to integrate itself into several key processes within eukaryotic cells: oxidative stress, autophagy, and apoptosis. Importantly, despite significant differences in the genomes of arthropod and filarial Wolbachia strains, these nexuses appear to lie on a continuum in different hosts. Here, we consider how iron metabolism may represent a fundamental aspect of host homeostasis that is impacted by Wolbachia infection, connecting disparate pathways ranging from the provision of haem and ATP to programmed cell death, aging, and the recycling of intracellular resources. Depending on how Wolbachia and host cells interact across networks that depend on iron, the gradient between parasitism and mutualism may shift dynamically in some systems, or alternatively, stabilise on one or the other end of the spectrum.

New Insights in Cysticercosis Transmission

PLoS Neglected Tropical Diseases News - 16 October 2014 - 9:00pm

by Carmen S. Arriola, Armando E. Gonzalez, Luis A. Gomez-Puerta, Maria T. Lopez-Urbina, Hector H. Garcia, Robert H. Gilman

Taenia solium infection causes severe neurological disease in humans. Even though infection and exposure to swine cysticercosis is scattered throughout endemic villages, location of the tapeworm only explains some of the nearby infections and is not related to location of seropositive pigs. Other players might be involved in cysticercosis transmission. In this study we hypothesize that pigs that carry nematodes specific to dung beetles are associated with cysticercosis infection and/or exposure. We carried out a cross-sectional study of six villages in an endemic region in northern Peru. We euthanized all pigs (326) in the villages and performed necropsies to diagnose cysticercosis. For each pig, we counted cysticerci; measured anti-cysticercus antibodies; identified intestinal nematodes; tabulated distance to nearest human tapeworm infection; and recorded age, sex, productive stage, and geographic reference. For the purpose of this paper, we defined cysticercosis infection as the presence of at least one cysticercus in pig muscles, and cysticercosis exposure as seropositivity to anti-cysticercus antibodies with the presence of 0–5 cysticerci. Compared to pigs without nematode infections, those pigs infected with the nematode Ascarops strongylina were significantly associated with the presence of cysticerci (OR: 4.30, 95%CI: 1.83–10.09). Similarly, pigs infected with the nematode Physocephalus sexalatus were more likely to have cysticercosis exposure (OR: 2.21, 95%CI: 1.50–3.28). In conclusion, our results suggest that there appears to be a strong positive association between the presence of nematodes and both cysticercosis infection and exposure in pigs. The role of dung beetles in cysticercosis dynamics should be further investigated.

Inhibition or Knockdown of ABC Transporters Enhances Susceptibility of Adult and Juvenile Schistosomes to Praziquantel

PLoS Neglected Tropical Diseases News - 16 October 2014 - 9:00pm

by Ravi S. Kasinathan, Lalit Kumar Sharma, Charles Cunningham, Thomas R. Webb, Robert M. Greenberg

Parasitic flatworms of the genus Schistosoma cause schistosomiasis, a neglected tropical disease that affects hundreds of millions. Treatment of schistosomiasis depends almost entirely on the drug praziquantel (PZQ). Though essential to treating and controlling schistosomiasis, a major limitation of PZQ is that it is not active against immature mammalian-stage schistosomes. Furthermore, there are reports of field isolates with heritable reductions in PZQ susceptibility, and researchers have selected for PZQ-resistant schistosomes in the laboratory. P-glycoprotein (Pgp; ABCB1) and other ATP binding cassette (ABC) transporters remove a wide variety of toxins and xenobiotics from cells, and have been implicated in multidrug resistance (MDR). Changes in ABC transporter structure or expression levels are also associated with reduced drug susceptibility in parasitic helminths, including schistosomes. Here, we show that the activity of PZQ against schistosome adults and juveniles ex vivo is potentiated by co-administration of either the highly potent Pgp inhibitor tariquidar or combinations of inhibitors targeting multiple ABC multidrug transporters. Adult worms exposed to sublethal PZQ concentrations remain active, but co-administration of ABC transporter inhibitors results in complete loss of motility and disruption of the tegument. Notably, juvenile schistosomes (3–4 weeks post infection), normally refractory to 2 µM PZQ, become paralyzed when transporter inhibitors are added in combination with the PZQ. Experiments using the fluorescent PZQ derivative (R)-PZQ-BODIPY are consistent with the transporter inhibitors increasing effective intraworm concentrations of PZQ. Adult worms in which expression of ABC transporters has been suppressed by RNA interference show increased responsiveness to PZQ and increased retention of (R)-PZQ-BODIPY consistent with an important role for these proteins in setting levels of PZQ susceptibility. These results indicate that parasite ABC multidrug transporters might serve as important targets for enhancing the action of PZQ. They also suggest a potentially novel and readily-available strategy for overcoming reduced PZQ susceptibility of schistosomes.

Co-infections of Malaria and Geohelminthiasis in Two Rural Communities of Nkassomo and Vian in the Mfou Health District, Cameroon

PLoS Neglected Tropical Diseases News - 16 October 2014 - 9:00pm

by Francis Zeukeng, Viviane Hélène Matong Tchinda, Jude Daiga Bigoga, Clovis Hugues Tiogang Seumen, Edward Shafe Ndzi, Géraldine Abonweh, Valérie Makoge, Amédée Motsebo, Roger Somo Moyou

Background

Human co-infection with malaria and helmimths is ubiquitous throughout Africa. Nevertheless, its public health significance on malaria severity remains poorly understood.

Methodology/Principal Findings

To contribute to a better understanding of epidemiology and control of this co-infection in Cameroon, a cross-sectional study was carried out to assess the prevalence of concomitant intestinal geohelminthiasis and malaria, and to evaluate its association with malaria and anaemia in Nkassomo and Vian. Finger prick blood specimens from a total of 263 participants aged 1–95 years were collected for malaria microscopy, assessment of haemoglobin levels, and molecular identification of Plasmodium species by PCR. Fresh stool specimens were also collected for the identification and quantification of geohelminths by the Kato-Katz method. The prevalence of malaria, geohelminths, and co-infections were 77.2%, 28.6%, and 22.1%, respectively. Plasmodium falciparum was the only malaria parasite species identified with mean parasite density of 111 (40; 18,800) parasites/µl of blood. The geohelminths found were Ascaris lumbricoides (21.6%) and Trichuris trichiura (10.8%), with mean parasite densities of 243 (24; 3,552) and 36 (24; 96) eggs/gram of faeces, respectively. Co-infections of A. lumbricoides and P. falciparum were the most frequent and correlated positively. While no significant difference was observed on the prevalences of single and co-infections between the two localities, there was a significant difference in the density of A. lumbricoides infection between the two localities. The overall prevalence of anaemia was 42%, with individuals co-infected with T. trichiura and P. falciparum (60%) being the most at risk. While the prevalence of malaria and anaemia were inversely related to age, children aged 5–14 years were more susceptible to geohelminthiasis and their co-infections with malaria.

Conclusion/Significance

Co-existence of geohelminths and malaria parasites in Nkassomo and Vian enhances the occurrence of co-infections, and consequently, increases the risk for anaemia.

Impact of Schistosoma mansoni on Malaria Transmission in Sub-Saharan Africa

PLoS Neglected Tropical Diseases News - 16 October 2014 - 9:00pm

by Martial L. Ndeffo Mbah, Laura Skrip, Scott Greenhalgh, Peter Hotez, Alison P. Galvani

Background

Sub-Saharan Africa harbors the majority of the global burden of malaria and schistosomiasis infections. The co-endemicity of these two tropical diseases has prompted investigation into the mechanisms of coinfection, particularly the competing immunological responses associated with each disease. Epidemiological studies have shown that infection with Schistosoma mansoni is associated with a greater malaria incidence among school-age children.

Methodology

We developed a co-epidemic model of malaria and S. mansoni transmission dynamics which takes into account key epidemiological interaction between the two diseases in terms of elevated malaria incidence among individuals with S. mansoni high egg output. The model was parameterized for S. mansoni high-risk endemic communities, using epidemiological and clinical data of the interaction between S. mansoni and malaria among children in sub-Saharan Africa. We evaluated the potential impact of the S. mansoni–malaria interaction and mass treatment of schistosomiasis on malaria prevalence in co-endemic communities.

Principal Findings

Our results suggest that in the absence of mass drug administration of praziquantel, the interaction between S. mansoni and malaria may reduce the effectiveness of malaria treatment for curtailing malaria transmission, in S. mansoni high-risk endemic communities. However, when malaria treatment is used in combination with praziquantel, mass praziquantel administration may increase the effectiveness of malaria control intervention strategy for reducing malaria prevalence in malaria- S. mansoni co-endemic communities.

Conclusions/Significance

Schistosomiasis treatment and control programmes in regions where S. mansoni and malaria are highly prevalent may have indirect benefits on reducing malaria transmission as a result of disease interactions. In particular, mass praziquantel administration may not only have the direct benefit of reducing schistosomiasis infection, it may also reduce malaria transmission and disease burden.

Dengue Virus Neutralizing Antibody Levels Associated with Protection from Infection in Thai Cluster Studies

PLoS Neglected Tropical Diseases News - 16 October 2014 - 9:00pm

by Darunee Buddhari, Jared Aldstadt, Timothy P. Endy, Anon Srikiatkhachorn, Butsaya Thaisomboonsuk, Chonticha Klungthong, Ananda Nisalak, Benjawan Khuntirat, Richard G. Jarman, Stefan Fernandez, Stephen J. Thomas, Thomas W. Scott, Alan L. Rothman, In-Kyu Yoon

Background

Long-term homologous and temporary heterologous protection from dengue virus (DENV) infection may be mediated by neutralizing antibodies. However, neutralizing antibody titers (NTs) have not been clearly associated with protection from infection.

Methodology/Principal Findings

Data from two geographic cluster studies conducted in Kamphaeng Phet, Thailand were used for this analysis. In the first study (2004–2007), cluster investigations of 100-meter radius were triggered by DENV-infected index cases from a concurrent prospective cohort. Subjects between 6 months and 15 years old were evaluated for DENV infection at days 0 and 15 by DENV PCR and IgM ELISA. In the second study (2009–2012), clusters of 200-meter radius were triggered by DENV-infected index cases admitted to the provincial hospital. Subjects of any age ≥6 months were evaluated for DENV infection at days 0 and 14. In both studies, subjects who were DENV PCR positive at day 14/15 were considered to have been “susceptible” on day 0. Comparison subjects from houses in which someone had documented DENV infection, but the subject remained DENV negative at days 0 and 14/15, were considered “non-susceptible.” Day 0 samples were presumed to be from just before virus exposure, and underwent plaque reduction neutralization testing (PRNT). Seventeen “susceptible” (six DENV-1, five DENV-2, and six DENV-4), and 32 “non-susceptible” (13 exposed to DENV-1, 10 DENV-2, and 9 DENV-4) subjects were evaluated. Comparing subjects exposed to the same serotype, receiver operating characteristic (ROC) curves identified homotypic PRNT titers of 11, 323 and 16 for DENV-1, -2 and -4, respectively, to differentiate “susceptible” from “non-susceptible” subjects.

Conclusions/Significance

PRNT titers were associated with protection from infection by DENV-1, -2 and -4. Protective NTs appeared to be serotype-dependent and may be higher for DENV-2 than other serotypes. These findings are relevant for both dengue epidemiology studies and vaccine development efforts.

The Evolutionary History and Spatiotemporal Dynamics of the Fever, Thrombocytopenia and Leukocytopenia Syndrome Virus (FTLSV) in China

PLoS Neglected Tropical Diseases News - 16 October 2014 - 9:00pm

by Xueyong Huang, Licheng Liu, Yanhua Du, Weili Wu, Haifeng Wang, Jia Su, Xiaoyan Tang, Qi Liu, Yinhui Yang, Yongqiang Jiang, Weijun Chen, Bianli Xu

Background

In 2007, a novel bunyavirus was found in Henan Province, China and named fever, thrombocytopenia and leukocytopenia syndrome virus (FTLSV); since then, FTLSV has been found in ticks and animals in many Chinese provinces. Human-to-human transmission has been documented, indicating that FTLSV should be considered a potential public health threat. Determining the historical spread of FTLSV could help curtail its spread and prevent future movement of this virus.

Method/Principal Findings

To examine the pattern of FTLSV evolution and the origin of outbreak strains, as well to examine the rate of evolution, the genome of 12 FTLSV strains were sequenced and a phylogenetic and Bayesian phylogeographic analysis of all available FTLSV sequences in China were performed. Analysis based on the FTLSV L segment suggests that the virus likely originated somewhere in Huaiyangshan circa 1790 (95% highest probability density interval: 1756–1817) and began spreading around 1806 (95% highest probability density interval: 1773–1834). Analysis also indicates that when FTLSV arrived in Jiangsu province from Huaiyangshan, Jiangsu Province became another source for the spread of the disease. Bayesian factor test analysis identified three major transmission routes: Huaiyangshan to Jiangsu, Jiangsu to Liaoning, and Jiangsu to Shandong. The speed of FTLSV movement has increased in recent decades, likely facilitated by modern human activity and ecosystem changes. In addition, evidence of RNA segment reassortment was found in FTLSV; purifying selection appears to have been the dominant force in the evolution of this virus.

Conclusion

Results presented in the manuscript suggest that the Huaiyangshan area is likely be the origin of FTLSV in China and identified probable viral migration routes. These results provide new insights into the origin and spread of FTLSV in China, and provide a foundation for future virological surveillance and control.

Hepatotoxicity in Mice of a Novel Anti-parasite Drug Candidate Hydroxymethylnitrofurazone: A Comparison with Benznidazole

PLoS Neglected Tropical Diseases News - 16 October 2014 - 9:00pm

by Carolina Davies, Nilay Dey, Olga Sanchez Negrette, Luis Antonio Parada, Miguel A. Basombrio, Nisha Jain Garg

Background

Treatment of Chagas disease, caused by Trypanosoma cruzi, relies on nifurtimox and benznidazole (BZL), which present side effects in adult patients, and natural resistance in some parasite strains. Hydroxymethylnitrofurazone (NFOH) is a new drug candidate with demonstrated trypanocidal activity; however, its safety is not known.

Methods

HepG2 cells dose response to NFOH and BZL (5–100 µM) was assessed by measurement of ROS, DNA damage and survival. Swiss mice were treated with NFOH or BZL for short-term (ST, 21 d) or long-term (LT, 60 d) periods. Sera levels of cellular injury markers, liver inflammatory and oxidative stress, and fibrotic remodeling were monitored.

Results

HepG2 cells exhibited mild stress, evidenced by increased ROS and DNA damage, in response to NFOH, while BZL at 100 µM concentration induced >33% cell death in 24 h. In mice, NFOH ST treatment resulted in mild-to-no increase in the liver injury biomarkers (GOT, GPT), and liver levels of inflammatory (myeloperoxidase, TNF-α), oxidative (lipid peroxides) and nitrosative (3-nitrotyrosine) stress. These stress responses in NFOH LT treated mice were normalized to control levels. BZL-treated mice exhibited a >5-fold increase in GOT, GPT and TNF-α (LT) and a 20–40% increase in liver levels of MPO activity (ST and LT) in comparison with NFOH-treated mice. The liver inflammatory infiltrate was noted in the order of BZL>vehicle≥NFOH and BZL>NFOH≥vehicle, respectively, after ST and LT treatments. Liver fibrotic remodeling, identified after ST treatment, was in the order of BZL>vehicle>NFOH; lipid deposits, indicative of mitochondrial dysfunction and in the order of NFOH>vehicle>BZL were evidenced after LT treatment.

Conclusions

NFOH induces mild ST hepatotoxicity that is normalized during LT treatment in mice. Our results suggest that additional studies to determine the efficacy and toxicity of NFOH are warranted.

Early Double-Negative Thymocyte Export in Trypanosoma cruzi Infection Is Restricted by Sphingosine Receptors and Associated with Human Chagas Disease

PLoS Neglected Tropical Diseases News - 16 October 2014 - 9:00pm

by Ailin Lepletier, Liliane de Almeida, Leonardo Santos, Luzia da Silva Sampaio, Bruno Paredes, Florencia Belén González, Célio Geraldo Freire-de-Lima, Juan Beloscar, Oscar Bottasso, Marcelo Einicker-Lamas, Ana Rosa Pérez, Wilson Savino, Alexandre Morrot

The protozoan parasite Trypanosoma cruzi is able to target the thymus and induce alterations of the thymic microenvironmental and lymphoid compartments. Acute infection results in severe atrophy of the organ and early release of immature thymocytes into the periphery. To date, the pathophysiological effects of thymic changes promoted by parasite-inducing premature release of thymocytes to the periphery has remained elusive. Herein, we show that sphingosine-1-phosphate (S1P), a potent mediator of T cell chemotaxis, plays a role in the exit of immature double-negative thymocytes in experimental Chagas disease. In thymuses from T. cruzi-infected mice we detected reduced transcription of the S1P kinase 1 and 2 genes related to S1P biosynthesis, together with increased transcription of the SGPL1 sphingosine-1-lyase gene, whose product inactivates S1P. These changes were associated with reduced intrathymic levels of S1P kinase activity. Interestingly, double-negative thymocytes from infected animals expressed high levels of the S1P receptor during infection, and migrated to lower levels of S1P. Moreover, during T. cruzi infection, this thymocyte subset expresses high levels of IL-17 and TNF-α cytokines upon polyclonal stimulation. In vivo treatment with the S1P receptor antagonist FTY720 resulted in recovery the numbers of double-negative thymocytes in infected thymuses to physiological levels. Finally, we showed increased numbers of double-negative T cells in the peripheral blood in severe cardiac forms of human Chagas disease.

Prevalence and Intensity of Soil-Transmitted Helminthiasis, Prevalence of Malaria and Nutritional Status of School Going Children in Honduras

PLoS Neglected Tropical Diseases News - 16 October 2014 - 9:00pm

by Rosa Elena Mejia Torres, Dora Nelly Franco Garcia, Gustavo Adolfo Fontecha Sandoval, Adriana Hernandez Santana, Prabhjot Singh, Sandra Tamara Mancero Bucheli, Martha Saboya, Mirian Yolanda Paz

Background

Many small studies have been done in Honduras estimating soil-transmitted helminthiasis (STH) prevalence but a country-wide study was last done in 2005. The country has the highest burden of malaria among all Central American countries. The present study was done to estimate country-wide STH prevalence and intensity, malaria prevalence and nutritional status in school going children.

Methods and Findings

A cross-sectional study was conducted following PAHO/WHO guidelines to select a sample of school going children of 3rd to 5th grades, representative of ecological regions in the country. A survey questionnaire was filled; anthropometric measurements, stool sample for STH and blood sample for malaria were taken. Kato-Katz method was used for STH prevalence and intensity and rapid diagnostic tests, microscopy, and polymerase chain reaction (PCR) were used for malaria parasite detection. A total of 2554 students were studied of which 43.5% had one or more STH. Trichuriasis was the most prevalent (34%) followed by ascariasis (22.3%) and hookworm (0.9%). Ecological regions II (59.7%) and VI (55.6%) in the north had the highest STH prevalence rates while IV had the lowest (10.6%). Prevalence of one or more high intensity STH was low (1.6%). Plasmodium vivax was detected by PCR in only 5 students (0.2%), all of which belonged to the same municipality; no P. falciparum infection was detected. The majority of children (83%) had normal body mass index for their respective age but a significant proportion were overweight (10.42%) and obese (4.35%).

Conclusions

Biannual deworming campaigns would be necessary in ecological regions II and VI, where STH prevalence is >50%. High prevalence of obesity in school going children is a worrying trend and portends of future increase in obesity related diseases. Malaria prevalence, both symptomatic and asymptomatic, was low and provides evidence for Honduras to embark on elimination of the disease.

Mapping the Potential Risk of Mycetoma Infection in Sudan and South Sudan Using Ecological Niche Modeling

PLoS Neglected Tropical Diseases News - 16 October 2014 - 9:00pm

by Abdallah M. Samy, Wendy W. J. van de Sande, Ahmed Hassan Fahal, A. Townsend Peterson

In 2013, the World Health Organization (WHO) recognized mycetoma as one of the neglected tropical conditions due to the efforts of the mycetoma consortium. This same consortium formulated knowledge gaps that require further research. One of these gaps was that very few data are available on the epidemiology and transmission cycle of the causative agents. Previous work suggested a soil-borne or Acacia thorn-prick-mediated origin of mycetoma infections, but no studies have investigated effects of soil type and Acacia geographic distribution on mycetoma case distributions. Here, we map risk of mycetoma infection across Sudan and South Sudan using ecological niche modeling (ENM). For this study, records of mycetoma cases were obtained from the scientific literature and GIDEON; Acacia records were obtained from the Global Biodiversity Information Facility. We developed ENMs based on digital GIS data layers summarizing soil characteristics, land-surface temperature, and greenness indices to provide a rich picture of environmental variation across Sudan and South Sudan. ENMs were calibrated in known endemic districts and transferred countrywide; model results suggested that risk is greatest in an east-west belt across central Sudan. Visualizing ENMs in environmental dimensions, mycetoma occurs under diverse environmental conditions. We compared niches of mycetoma and Acacia trees, and could not reject the null hypothesis of niche similarity. This study revealed contributions of different environmental factors to mycetoma infection risk, identified suitable environments and regions for transmission, signaled a potential mycetoma-Acacia association, and provided steps towards a robust risk map for the disease.

Effect of Non-tuberculous Mycobacteria on Host Biomarkers Potentially Relevant for Tuberculosis Management

PLoS Neglected Tropical Diseases News - 16 October 2014 - 9:00pm

by S. Dhanasekaran, Synne Jenum, Ruth Stavrum, Harald G. Wiker, John Kenneth, Mario Vaz, T. Mark Doherty, Harleen M. S. Grewal, TB Trials Study Group

Background

Non-tuberculous mycobacteria (NTM) are different from Mycobacterium tuberculosis (MTB) both in their ubiquitous environmental distribution and in their reduced capacity to cause disease. While often neglected in favour of other infectious diseases, NTM may interfere with important aspects of TB control and management, namely the efficacy of new anti-tuberculosis (TB) vaccines; the immuno-diagnostic Tuberculin skin test (TST) and QuantiFERON TB Gold In Tube assay (QFTGIT); and immune biomarkers explored for their diagnostic and/or predictive potential. Our objective was therefore to explore host immune biomarkers in children who had NTM isolated from respiratory and/or gastric specimens.

Methodology and Principle Findings

The present study was nested within a prospective cohort study of BCG-vaccinated neonates in Southern India. In this setting, immune biomarkers from peripheral blood were analyzed in 210 children aged <3 years evaluated for TB using dual-colour-Reverse-Transcriptase-Multiple-Ligation-dependent-Probe-Amplification (dcRT-MLPA) and Bio-Plex assays. The children were classified based on clinical examination, chest X-rays and mycobacterial culture reports as either: 1) TB disease, 2) NTM present and 3) controls. The study shows a down-regulation of RAB33A (p<0.001) and up-regulation of TGFβ1, IL-2 and IL-6 (all p<0.05) in children with TB disease, and that RAB33A, TGFBR2 and IL-10 (all p<0.05) were differentially expressed in children with NTM present when compared to children that were culture negative for MTB and NTM (controls).

Conclusions and Significance

Carriage of NTM may reduce the specificity of future diagnostic and predictive immune biomarkers relevant to TB management.

Protection Motivation Theory in Predicting Intention to Engage in Protective Behaviors against Schistosomiasis among Middle School Students in Rural China

PLoS Neglected Tropical Diseases News - 16 October 2014 - 9:00pm

by Han Xiao, Shiyue Li, Xinguang Chen, Bin Yu, Mengting Gao, Hong Yan, Chukwuemeka N. Okafor

Background

Among millions of people who suffer from schistosomiasis in China, adolescents are at increased risk to be infected. However, there is a lack of theory-guided behavioral prevention intervention programs to protect these adolescents. This study attempted to apply the Protection Motivation Theory (PMT) in predicting intentions to engage in protective behaviors against schistosomiasis infection.

Methods

The participants were selected using the stratified cluster sampling method. Survey data were collected using anonymous self-reported questionnaire. The advanced structural equation modeling (SEM) method was utilized to assess the complex relationship among schistosomiasis knowledge, previous risk exposure and protective measures in predicting intentions to engage in protective behavior through the PMT constructs.

Principal Findings

Approximately 70% of participants reported they were always aware of schistosomiasis before exposure to water with endemic schistosomiasis, 6% of the participants reported frequency of weekly or monthly prior exposure to snail-conditioned water. 74% of participants reported having always engaged in protective behaviors in the past three months. Approximately 7% were unlikely or very unlikely to avoid contact with snail-conditioned water, and to use protective behaviors before exposure. Results from SEM analysis indicated that both schistosomiasis knowledge and prior exposure to schistosomiasis were indirectly related to behavior intentions through intrinsic rewards and self-efficacy; prior protective behaviors were indirectly related to behavior intentions through severity, intrinsic rewards and self-efficacy, while awareness had an indirect relationship with behavior intentions through self-efficacy. Among the seven PMT constructs, severity, intrinsic rewards and self-efficacy were significantly associated with behavior intentions.

Conclusions

The PMT can be used to predict the intention to engage in protective behaviors against schistosomiasis. Schistosomiasis intervention programs should focus on the severity, intrinsic rewards and self-efficacy of protection motivation, and also increase the awareness of infection, and enrich the contents of schistosomiasis education.

The Phylogeography of Rabies in Grenada, West Indies, and Implications for Control

PLoS Neglected Tropical Diseases News - 16 October 2014 - 9:00pm

by Ulrike Zieger, Denise A. Marston, Ravindra Sharma, Alfred Chikweto, Keshaw Tiwari, Muzzamil Sayyid, Bowen Louison, Hooman Goharriz, Katja Voller, Andrew C. Breed, Dirk Werling, Anthony R. Fooks, Daniel L. Horton

In Grenada, West Indies, rabies is endemic, and is thought to be maintained in a wildlife host, the small Indian mongoose (Herpestes auropunctatus) with occasional spillover into other hosts. Therefore, the present study was undertaken to improve understanding of rabies epidemiology in Grenada and to inform rabies control policy. Mongooses were trapped island-wide between April 2011 and March 2013 and examined for the presence of Rabies virus (RABV) antigen using the direct fluorescent antibody test (dFAT) and PCR, and for serum neutralizing antibodies (SNA) using the fluorescent antibody virus neutralization test (FAVN). An additional cohort of brain samples from clinical rabies suspects submitted between April 2011 and March 2014 were also investigated for the presence of virus. Two of the 171 (1.7%) live-trapped mongooses were RABV positive by FAT and PCR, and 20 (11.7%) had SNAs. Rabies was diagnosed in 31 of the submitted animals with suspicious clinical signs: 16 mongooses, 12 dogs, 2 cats and 1 goat. Our investigation has revealed that rabies infection spread from the northeast to the southwest of Grenada within the study period. Phylogenetic analysis revealed that the viruses from Grenada formed a monophyletic clade within the cosmopolitan lineage with a common ancestor predicted to have occurred recently (6–23 years ago), and are distinct from those found in Cuba and Puerto Rico, where mongoose rabies is also endemic. These data suggest that it is likely that this specific strain of RABV was imported from European regions rather than the Americas. These data contribute essential information for any potential rabies control program in Grenada and demonstrate the importance of a sound evidence base for planning interventions.

Systems Biology Studies of Adult Paragonimus Lung Flukes Facilitate the Identification of Immunodominant Parasite Antigens

PLoS Neglected Tropical Diseases News - 16 October 2014 - 9:00pm

by Samantha N. McNulty, Peter U. Fischer, R. Reid Townsend, Kurt C. Curtis, Gary J. Weil, Makedonka Mitreva

Background

Paragonimiasis is a food-borne trematode infection acquired by eating raw or undercooked crustaceans. It is a major public health problem in the far East, but it also occurs in South Asia, Africa, and in the Americas. Paragonimus worms cause chronic lung disease with cough, fever and hemoptysis that can be confused with tuberculosis or other non-parasitic diseases. Treatment is straightforward, but diagnosis is often delayed due to a lack of reliable parasitological or serodiagnostic tests. Hence, the purpose of this study was to use a systems biology approach to identify key parasite proteins that may be useful for development of improved diagnostic tests.

Methodology/Principal Findings

The transcriptome of adult Paragonimus kellicotti was sequenced with Illumina technology. Raw reads were pre-processed and assembled into 78,674 unique transcripts derived from 54,622 genetic loci, and 77,123 unique protein translations were predicted. A total of 2,555 predicted proteins (from 1,863 genetic loci) were verified by mass spectrometric analysis of total worm homogenate, including 63 proteins lacking homology to previously characterized sequences. Parasite proteins encoded by 321 transcripts (227 genetic loci) were reactive with antibodies from infected patients, as demonstrated by immunoaffinity purification and high-resolution liquid chromatography-mass spectrometry. Serodiagnostic candidates were prioritized based on several criteria, especially low conservation with proteins in other trematodes. Cysteine proteases, MFP6 proteins and myoglobins were abundant among the immunoreactive proteins, and these warrant further study as diagnostic candidates.

Conclusions

The transcriptome, proteome and immunolome of adult P. kellicotti represent a major advance in the study of Paragonimus species. These data provide a powerful foundation for translational research to develop improved diagnostic tests. Similar integrated approaches may be useful for identifying novel targets for drugs and vaccines in the future.

Mycetoma Medical Therapy

PLoS Neglected Tropical Diseases News - 16 October 2014 - 9:00pm

by Oliverio Welsh, Hail Mater Al-Abdely, Mario Cesar Salinas-Carmona, Ahmed Hassan Fahal

Medical treatment of mycetoma depends on its fungal or bacterial etiology. Clinically, these entities share similar features that can confuse diagnosis, causing a lack of therapeutic response due to inappropriate treatment. This review evaluates the response to available antimicrobial agents in actinomycetoma and the current status of antifungal drugs for treatment of eumycetoma.

Evaluation of Commercially Available Diagnostic Tests for the Detection of Dengue Virus NS1 Antigen and Anti-Dengue Virus IgM Antibody

PLoS Neglected Tropical Diseases News - 16 October 2014 - 9:00pm

by Elizabeth A. Hunsperger, Sutee Yoksan, Philippe Buchy, Vinh Chau Nguyen, Shamala Devi Sekaran, Delia A. Enria, Susana Vazquez, Elizabeth Cartozian, Jose L. Pelegrino, Harvey Artsob, Maria G. Guzman, Piero Olliaro, Julien Zwang, Martine Guillerm, Susie Kliks, Scott Halstead, Rosanna W. Peeling, Harold S. Margolis

Commercially available diagnostic test kits for detection of dengue virus (DENV) non-structural protein 1 (NS1) and anti-DENV IgM were evaluated for their sensitivity and specificity and other performance characteristics by a diagnostic laboratory network developed by World Health Organization (WHO), the UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR) and the Pediatric Dengue Vaccine Initiative (PDVI). Each network laboratory contributed characterized serum specimens for the panels used in the evaluation. Microplate enzyme-linked immunosorbent assay (ELISA) and rapid diagnostic test (RDT formats) were represented by the kits. Each ELISA was evaluated by 2 laboratories and RDTs were evaluated by at least 3 laboratories. The reference tests for IgM anti-DENV were laboratory developed assays produced by the Armed Forces Research Institute for Medical Science (AFRIMS) and the Centers for Disease Control and Prevention (CDC), and the NS1 reference test was reverse transcriptase polymerase chain reaction (RT-PCR). Results were analyzed to determine sensitivity, specificity, inter-laboratory and inter-reader agreement, lot-to-lot variation and ease-of-use. NS1 ELISA sensitivity was 60–75% and specificity 71–80%; NS1 RDT sensitivity was 38–71% and specificity 76–80%; the IgM anti-DENV RDTs sensitivity was 30–96%, with a specificity of 86–92%, and IgM anti-DENV ELISA sensitivity was 96–98% and specificity 78–91%. NS1 tests were generally more sensitive in specimens from the acute phase of dengue and in primary DENV infection, whereas IgM anti-DENV tests were less sensitive in secondary DENV infections. The reproducibility of the NS1 RDTs ranged from 92-99% and the IgM anti-DENV RDTs from 88–94%.

Pages